(2003•吉林)已知A(8,0),B(0,6),C(0,-2),連接AB,過點(diǎn)C的直線l與AB交于點(diǎn)P.
(1)如圖1,當(dāng)PB=PC時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖2,設(shè)直線l與x軸所夾的銳角為α,且tanα=,連接AC,求直線l與x軸的交點(diǎn)E的坐標(biāo)及△PAC的面積.

【答案】分析:(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),過點(diǎn)P作PD⊥y軸于D,根據(jù)OB=6,由題意可設(shè)AB的解析式為y=mx+6把A(8,0)代入解析式就可以求出函數(shù)的解析式.
(2)先求出E點(diǎn)的坐標(biāo),就可以求出直線l的解析式.求出兩條直線的交點(diǎn)P,再根據(jù)S△PAC=S△PAE+S△CAE就可以求解.
解答:解:(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),
過點(diǎn)P作PD⊥y軸于D,則BD=DC=4.
∵OB=6,∴OD=2,
即y=2.
由題意可設(shè)AB的解析式為y=mx+6.
∵A(8,0)
∴m=-
∴AB的解析式為y=-x+6. (1)(3分)
當(dāng)y=2時(shí),2=-x+6,
解得x=
∴P(,2).                                     (4分)

(2)∵tanα=,OC=2,
∴OE=
∴E(,0).                                       (5分)
由題意可設(shè)直線l的解析式為y=kx-2,
∵直線l經(jīng)過E(,0),
k-2=0,∴k=
∴直線l的解析式為y=x-2.   (2)(6分)
由(1)(2)得x-2=-x+6,
解得x=4.
把x=4代入y=-x+6得y=3,
∴P(4,3).
S△PAC=S△PAE+S△CAE=×(8-)×3+×(8-)×2=16.  (8分)
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,并且考查不規(guī)則圖形的面積可以轉(zhuǎn)化為求一些規(guī)則圖形或易求面積的圖形的和或差的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2003•吉林)已知直線y=2x+b經(jīng)過點(diǎn)(6,3),則b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2003•吉林)已知直線y=2x+b經(jīng)過點(diǎn)(6,3),則b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例4.3 一次函數(shù)(解析版) 題型:填空題

(2003•吉林)已知直線y=2x+b經(jīng)過點(diǎn)(6,3),則b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年吉林省吉林市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•吉林)已知直線y=2x+b經(jīng)過點(diǎn)(6,3),則b=   

查看答案和解析>>

同步練習(xí)冊(cè)答案