如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點(diǎn),過(guò)D作DE⊥AC,交AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BD=8,求DE的長(zhǎng).

【答案】分析:(1)要證明切線,結(jié)合DE⊥AC,只需證明OD∥AC,顯然根據(jù)三角形的中位線定理即可證明;
(2)連接AD,因?yàn)锳B為圓的直徑,所以∠ADB=90°利用勾股定理求出AD的長(zhǎng),根據(jù)(1)中的平行,易證明角相等.從而發(fā)現(xiàn)等腰三角形ABC,然后進(jìn)行計(jì)算即可.
解答:(1)證明:連接OD;
∵BD=CD,AO=BO,
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE與⊙O相切;

(2)解:連接AD,
由(1)知,OD∥AC,
∴∠BDO=∠C.
∵OD=OB,
∴∠B=∠BDO,
∴∠B=∠C.
∴AC=AB.
∵AB=10,
∴AC=10,
∵AB為圓的直徑,
∴∠ADB=90°,
∴AD==6,
∴CD=8,
∵S△ADC=CD×AD=AC×DE,
∴DE===4.8.
點(diǎn)評(píng):本題綜合性較強(qiáng),考查點(diǎn)較多,考查了切線的判定定理和性質(zhì)定理、勾股定理,以及三角形的面積公式,要細(xì)心思考認(rèn)真分析,思路還是比較好找的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當(dāng)∠BAC滿足什么條件時(shí),四邊形ADFE是矩形;
(2)當(dāng)∠BAC滿足什么條件時(shí),平行四邊形ADFE不存在;
(3)當(dāng)△ABC分別滿足什么條件時(shí),平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點(diǎn),交AC于E點(diǎn),BD=DE
(1)求證:△ABC是等腰三角形;
(2)若E是AC的中點(diǎn),求
BD
的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•峨眉山市二模)如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點(diǎn),過(guò)D作DE⊥AC,交AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BD=8,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•黔東南州)如圖,以△ABC的邊BC為直徑作⊙O分別交AB,AC于點(diǎn)F.點(diǎn)E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求證:DM2=DH•DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以△ABC的邊AB為直徑的⊙O交AC于點(diǎn)D,弦DE∥AB,∠C=∠BAF
(1)求證:BC為⊙O的切線;
(2)若⊙O的半徑為5,AD=2
5
,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案