【題目】如圖,是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的和距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈,建立適當(dāng)坐標(biāo)系.
(1)求拋物線的解析式.
(2)求兩盞景觀燈之間的水平距離.
【答案】(1)y=﹣(x﹣5)2+5(0≤x≤10);(2)5m.
【解析】整體分析:
(1)建立坐標(biāo)系后,確定拋物線的頂點(diǎn)坐標(biāo),設(shè)解析式為y=a(x﹣5)2+5,把點(diǎn)(0,1)代入求a;(2)根據(jù)兩盞景觀燈的縱坐標(biāo)是4,列方程求橫坐標(biāo).
(1)根據(jù)題意建立坐標(biāo)系,如圖所示:
拋物線的頂點(diǎn)坐標(biāo)為(5,5),與y軸交點(diǎn)坐標(biāo)是(0,1),
設(shè)拋物線的解析式是y=a(x﹣5)2+5,
把(0,1)代入y=a(x﹣5)2+5,
得a=﹣,
∴y=﹣ (x﹣5)2+5(0≤x≤10);
(2)由已知得兩景觀燈的縱坐標(biāo)都是4,
∴4=﹣ (x﹣5)2+5,
∴ (x﹣5)2=1,
∴x1=,x2=.
∴﹣=5.
所以兩景觀燈之間的水平距離為5米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)y1,y2的圖象的頂點(diǎn)分別為(a,b)、(c,d),當(dāng)a=﹣c,b=2d,且開口方向相同時(shí),則稱y1是y2的“反倍頂二次函數(shù)”.
(1)請(qǐng)寫出二次函數(shù)y=x2+x+1的一個(gè)“反倍頂二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2+nx和二次函數(shù)y2=nx2+x,函數(shù)y1+y2恰是y1﹣y2的“反倍頂二次函數(shù)”,求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿A→B→C的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿C→A→B的方向移動(dòng),在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:
(1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QA=AP
(2)如圖2,點(diǎn)Q在CA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長(zhǎng)度等于線段BP的長(zhǎng)的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)、分別作軸的垂線,垂足分別為、.
(1)求直線和直線的解析式;
(2)點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過(guò)作軸的垂線交直線于點(diǎn),是否存在這樣的點(diǎn),使得以、、、為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若沿方向平移(點(diǎn)在線段上,且不與點(diǎn)重合),在平移的過(guò)程中,設(shè)平移距離為,與重疊部分的面積記為,試求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是△ABC內(nèi)一點(diǎn),AD=BD,且AD⊥BD,連接CD.過(guò)點(diǎn)C作CE⊥BC交AD的延長(zhǎng)線于點(diǎn) E,連接BE.過(guò)點(diǎn)D作DF⊥CD交BC于點(diǎn)F.
(1)若BD=DE=,CE=,求BC的長(zhǎng);
(2)若BD=DE,求證:BF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)5-3+4-
(2)(--)×(-36)
(3)-―(1―0.5)÷×[2+(-4)2]
(4)(-)×52÷|-|+()2019×42020
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),線段.
(1)如圖,若點(diǎn)在線段上,且,,點(diǎn)、分別是、的中點(diǎn),則線段的長(zhǎng)度是 ;
(2)若把(1)中點(diǎn)在線段上,且,,改為點(diǎn)是線段上任意一點(diǎn),且,,其他條件不變,請(qǐng)求出線段的長(zhǎng)度(用含、的式子表示);
(3)若把(2)中點(diǎn)是線段上任意一點(diǎn),改為點(diǎn)是直線上任意一點(diǎn),其他條件不變,則線段的長(zhǎng)度會(huì)變化嗎?若有變化,求出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD//BC,AD=AB=2,∠B=120°,∠ADC=150°,現(xiàn)以對(duì)角線AC為邊向點(diǎn)D一側(cè)作等邊△ACE,則四邊形ABCE的面積=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用如圖所示矩形紙片的四個(gè)角都剪去一個(gè)邊長(zhǎng)為的正方形(陰影部分).并制成一個(gè)長(zhǎng)方體紙盒。
(1)用a,b,x表示紙片剩余部分的面積和紙盒的底面積;
(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時(shí),求正方形的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com