如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF. 解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖乙,線段CF,BD之間的位置關(guān)系為 _________ ,數(shù)量關(guān)系為 _________
②當(dāng)點(diǎn)D在線段BC的延長線時,如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB⊥AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動. 試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點(diǎn)C,F(xiàn)重合除外)畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)
(3)若AC=4,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長的最大值.

解:(1)①CF與BD位置關(guān)系是垂直,數(shù)量關(guān)系是相等
②當(dāng)點(diǎn)D在BC的延長線上時①的結(jié)論仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC
又AB=AC,∴△DAB≌△FAC,
∴CF=BD   ∠ACF=∠ABD
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.
即CF⊥BD.
(2)當(dāng)∠BCA=45°時,CF⊥BD(如圖)
理由是:過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,
∴AC=AG可證:△GAD≌△CAF
∴∠ACF=∠AGD=45°∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)當(dāng)具備∠BCA=45°時 過點(diǎn)A作AQ⊥BC交BC于點(diǎn)Q,(如圖)
∵DE與CF交于點(diǎn)P時,
∴此時點(diǎn)D位于線段CQ上
∵∠BCA=45°,可求出AQ=QC=4.
設(shè)CD=x,
∴DQ=4+x
容易說明△AQD∽△DCP,
,

∴CP=+x,
∵0<x≤3,
∴當(dāng)x=3時,CP有最大值5.25.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖乙,線段CF,BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當(dāng)點(diǎn)D在線段BC的延長線時,如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動.
試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點(diǎn)C,F(xiàn)重合除外)畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)
(3)若AC=4
2
,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為
垂直
,數(shù)量關(guān)系為
相等

②當(dāng)點(diǎn)D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點(diǎn)D在線段BC上運(yùn)動.試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點(diǎn)C、F重合除外)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、(1)如圖甲,在△ABC中,AB=AC,AD平分∠BAC,則BD與CD相等嗎?請說明理由;
(2)若將圖甲變?yōu)閳D乙,其他條件不變,則BD與CD仍相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長線于M,∠A=40°.
(1)求∠NMB的大小.
(2)如圖乙,如果將(1)中∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的大。
(3)根據(jù)(1)(2)的計算,你能發(fā)現(xiàn)其中的蘊(yùn)涵的規(guī)律嗎?請寫出你的猜想并證明.
(4)如圖丙,將(1)中的∠A改為鈍角,其余條件不變,對這個問題規(guī)律的認(rèn)識是否需要加以修改?請你把∠A代入一個鈍角度數(shù)驗(yàn)證你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列問題:
(1)當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
垂直
垂直
,數(shù)量關(guān)系為
相等
相等

(2)當(dāng)點(diǎn)D在線段BC的延長線上時,如圖乙,①中的結(jié)論是否仍然成立,為什么?(要求寫出證明過程)

查看答案和解析>>

同步練習(xí)冊答案