如圖,對稱軸為直線l的拋物線y=ax2+bx+c與坐標軸交于點A、C,且OA=2OC=1.則下列結(jié)論:①當x<0時,y隨x的增大而增大;②4a+2b+1>0;③數(shù)學(xué)公式;④2a+b<0.其中正確的結(jié)論有    個.


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
分析:由OA=2OC=1可得到A點坐標為(0,1),C點坐標為(-,0),把它們代入解析式得到c=1,a-b+1=0,即a=2b-4;由于拋物線的對稱軸在y軸的右側(cè),且開口向下則當x<0時,y隨x的增大而增大;當x=2時y<0,則4a+2b+c<0,把c=2代入后得到4a+2b+1<0;再把a=2b-4代入4a+2b+1<0可解得b>,又x=1時y>0,則a+b+1>0,
再把a=2b-4代入a+b+1>0可解得b>1,則1<b<;由于對稱軸方程滿足0<-<1,而a<0,變形即可得到2a+b<0.
解答:∵OA=2OC=1,
∴A點坐標為(0,1),C點坐標為(-,0),
∴c=1,a-b+1=0,即a=2b-4,
∵拋物線的對稱軸在y軸的右側(cè),且開口向下,
∴當x<0時,y隨x的增大而增大,所以①正確;
∵x=2時y<0,
∴4a+2b+c<0,
而c=1,
∴4a+2b+1<0,所以②錯誤;
把a=2b-4代入4a+2b+1<0得到4(2b-4)+2b+1<0,解得b>
∵x=1時y>0,則a+b+1>0,
把a=2b-4代入a+b+1>0得2b-4+b+1>0,解得b>1,
∴1<b<,所以③錯誤;
∵0<-<1,而a<0,
∴-b>2a,即2a+b<0,所以④正確.
故選C.
點評:本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;對稱軸為直線x=-;拋物線與y軸的交點坐標為(0,c);當b2-4ac>0,拋物線與x軸有兩個交點;當b2-4ac=0,拋物線與x軸有一個交點;當b2-4ac<0,拋物線與x軸沒有交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣二模)如圖,對稱軸為直線x=-
72
的拋物線經(jīng)過點A(-6,0)和點B(0,4).
(1)求拋物線的解析式和頂點坐標;
(2)設(shè)點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=-2的拋物線經(jīng)過A(-3,0)和B(0,-3).
(1)求拋物線解析式;
(2)設(shè)點D(m,n)是拋物線上一動點,且位于第二象限,四邊形ODAE是以O(shè)A為對角線的平行四邊形.
①當四邊形ODAE的面積為
94
時,請判斷四邊形ODAE是否為菱形?并說明理由;
②當點E也剛好落在拋物線上時.求m的值;
(3)設(shè)拋物線與x軸另一交點為C,拋物線上是否存在點P,使得△PBC為直角三角形?若存在,直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=
72
的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點D的坐標;
(2)設(shè)點E(x,y)是拋物線上位于第四象限內(nèi)一動點,將△OAE繞OA的中點旋轉(zhuǎn)180°,點E落到點F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當四邊形OEAF的面積為24時,請判斷四邊形OEAF的形狀.
②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
(3)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,請直接寫出滿足條件的所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=
72
的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線第四象限上一動點,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)若S=24,試判斷?OEAF是否為菱形;
(4)若點E在(1)中的拋物線上,點F在對稱軸上,以O(shè)、E、A、F為頂點的四邊形能否為平行四邊形?若能,求出點E、F的坐標;若不能,請說明理由.(第(4)問不寫解答過程,只寫結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,對稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過原點O,得到直線l.點P是l上一動點,當△PAB的周長最小時,求點P的坐標.
(3)當△PAB的周長最小時,在直線AB的上方是否存在一點Q,使以A,B,Q為頂點的三角形與△POB相似?若存在,直接寫出點Q的坐標;若不存在,說明理由.(規(guī)定:點Q的對應(yīng)頂點不為點O)

查看答案和解析>>

同步練習(xí)冊答案