【題目】 如圖,矩形ABCD中,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E、F

1)求證:四邊形BEDF是平行四邊形;

2)只需添加一個(gè)條件,即______,可使四邊形BEDF為菱形.

【答案】(1)詳見解析;(2)EFBDDE=BE(答案不唯一)

【解析】

1)根據(jù)平行四邊形ABCD的性質(zhì),判定BOE≌△DOFASA),得出四邊形BEDF的對(duì)角線互相平分,進(jìn)而得出結(jié)論;

2)根據(jù)根據(jù)菱形的判定作出判斷:對(duì)角線互相垂直的平行四邊形是菱形或鄰邊相等的平行四邊形是菱形.

1)證明:∵四邊形ABCD是平行四邊形,OBD的中點(diǎn),

ABDCOB=OD,

∴∠OBE=ODF

又∵∠BOE=DOF,

∴△BOE≌△DOFASA),

EO=FO,

∴四邊形BEDF是平行四邊形;

2EFBDDE=BE(答案不唯一)

若添加EFBD,由對(duì)角線互相垂直的平行四邊形是菱形,所以平行四邊形BEDF為菱形;

若添加DE=BE,由鄰邊相等的平行四邊形是菱形,所以平行四邊形BEDF為菱形;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形的兩個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)軸上,且兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,軸于點(diǎn),已知點(diǎn)的坐標(biāo)是(23).

1)求的值;

2)若的面積為2,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A1,m),B2,mn)(n0)在同一個(gè)函數(shù)的圖象上,則這個(gè)函數(shù)可能是( 。

A.yxB.y=﹣C.yx2D.y=﹣x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示已知二次函數(shù)經(jīng)過點(diǎn)B3,0),C0,3),D4,-5

1求拋物線的解析式;

2ABC的面積;

3P是拋物線上一點(diǎn),SABP=SABC這樣的點(diǎn)P有幾個(gè)請(qǐng)直接寫出它們的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,GFCD

1)①求證:四邊形CEGF是正方形;②推斷:的值為  

2)將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(α45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系;

3)正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CGAD于點(diǎn)H.若AG6,GH2,求正方形CEGF和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為ABBC兩段,每段山坡近似是“直”的,測(cè)得坡長(zhǎng)AB800米,BC200米,坡角∠BAF30°,坡角∠CBE45°,則山峰的高度為( 。┟祝

A.500B.400+100C.D.541

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCDAB上一點(diǎn)(不與點(diǎn)A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針方向旋轉(zhuǎn)90°得到線段PE,PE交邊BC于點(diǎn)F,連接BE,DF

1)求證:∠ADP=∠EPB;

2)求∠CBE的度數(shù);

3)當(dāng)△PFD∽△BFP時(shí),求tanFPB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)E的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長(zhǎng)線交該切線于點(diǎn)C,若∠C30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案