如圖所示的Rt△ABC向右翻滾,下列說法正確的有( 。
(1)①?②是旋轉(zhuǎn)
(2)①?③是平移
(3)①?④是平移
(4)②?③是旋轉(zhuǎn).
A.1種B.2種C.3種D.4種

觀察圖形可知,(1)(3)(4)說法正確;
(2)①?③需要改變旋轉(zhuǎn)中心,經(jīng)過兩次旋轉(zhuǎn)得到,不屬于平移,錯誤;
正確的有三種,故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將線段BM繞點B逆時針旋轉(zhuǎn)得到BN,連接EN,AM,CM.
(1)求證:AM=MC;
(2)若△AMB≌△ENB,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A,B的坐標分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點O對稱的圖形△COD;
(2)將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點D的坐標是______,點F的坐標是______,此圖中線段BF和DF的關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把△ABC繞著點C順時針旋轉(zhuǎn)35°,得到△A′B′C,A′B′交AC于D點.若∠A′DC=90°,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EFDG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問題:

(1)旋轉(zhuǎn):將△ABC繞點C順時針方向旋轉(zhuǎn)90°,請你在圖中作出旋轉(zhuǎn)后的對應(yīng)圖形△A1B1C,并求出AB1的長度;
(2)翻折:將△A1B1C沿過點B1且與直線l垂直的直線翻折,得到翻折后的對應(yīng)圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當y等于△ABC面積的一半時,x的值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

作圖題(利用尺規(guī),按下列要求作圖,不寫作法,但要保留作圖痕跡)
(1)如圖,6個同樣大小的小正方形紙片,現(xiàn)要把它們粘貼在一起,拼成一個正方體的平面展開圖,你認為應(yīng)該怎樣粘貼才是正方體的平面展開圖?請在下面的方格紙中畫出你的平面展開圖.(只畫一個你認為正確的即可)
(2)如圖,在△ABC中,0是AB的中點,請你作出以O(shè)為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)180°后的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCO的邊長為4,D為AB上一點,且BD=3,以點C為中心,把△CBD順時針旋轉(zhuǎn)90°,得到△CB1D1
(1)直接寫出點D1的坐標;
(2)求點D旋轉(zhuǎn)到點D1所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
①畫出△ABC關(guān)于x軸對稱的△A1B1C1;
②畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
③△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
④△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:以△ABC的邊AB、AC為邊分別向外作正方形ADEB、ACGF,連接DC、BF相交于M,DC、AB相交于N.
(1)從旋轉(zhuǎn)的角度看,△ADC是繞點______逆時針旋轉(zhuǎn)______度,可以得到△ABF.
(2)CD與BF有何關(guān)系?請說明理由.

查看答案和解析>>

同步練習冊答案