【題目】如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長線上,AD切半圓O于點(diǎn)D,BC⊥AD于點(diǎn)C,AB=2,半圓O的半徑為2,則BC的長為 .
【答案】1
【解析】解:連接OD,
∵AD切半圓O于點(diǎn)D,
∴OD⊥AD,
∵BC⊥AD,
∴OD∥BC,
∴△BCA∽△ODA,
∴ ,
∴ ,
∴BC=1,
所以答案是:1.
【考點(diǎn)精析】本題主要考查了切線的性質(zhì)定理和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在第一象限,⊙P與x軸相切于點(diǎn)Q,與y軸交于M(0,2),N(0,8)兩點(diǎn),則點(diǎn)P的坐標(biāo)是( )
A.(5,3)
B.(3,5)
C.(5,4)
D.(4,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,P是對(duì)角線AC上任一點(diǎn)(不與A,C重合),連接BP,DP,過P作PE∥CD交AD于E,過P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯(cuò)誤的是( )
A.∠DAE=∠B
B.∠EAC=∠C
C.AE∥BC
D.∠DAE=∠EAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計(jì))加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測(cè)量,得到如下數(shù)據(jù):
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | … |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;
(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時(shí),背起來正合適,請(qǐng)求出此時(shí)單層部分的長度;
(3)設(shè)挎帶的長度為lcm,求l的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,∠ACB=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB1C1 , 當(dāng)點(diǎn)C1、B1、C三點(diǎn)共線時(shí),旋轉(zhuǎn)角為α,連接BB1 , 交AC于點(diǎn)D.下列結(jié)論:①△AC1C為等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1 , 其中正確的是( )
A.①③④
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com