【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
【答案】(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.
【解析】
試題(1)先把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,即可得到m=﹣8,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式,即可求出n=2,然后利用待定系數(shù)法確定一次函數(shù)的解析式;
(2)先求出直線y=﹣x﹣2與x軸交點(diǎn)C的坐標(biāo),然后利用S△AOB=S△AOC+S△BOC進(jìn)行計(jì)算;
(3)觀察函數(shù)圖象得到當(dāng)x<﹣4或0<x<2時,一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.
試題解析:(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函數(shù)解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得:,解得:,所以一次函數(shù)的解析式為y=﹣x﹣2;
(2)y=﹣x﹣2中,令y=0,則x=﹣2,即直線y=﹣x﹣2與x軸交于點(diǎn)C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由圖可得,不等式的解集為:x<﹣4或0<x<2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),連接CE,連接DE交AC于F,AD=4,AB=6.
(1)求證:△ADC∽△ACB;
(2)求AC的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示).
(1)求二次函數(shù)y=﹣x2+x+6的頂點(diǎn)坐標(biāo)和x軸的交點(diǎn)坐標(biāo);
(2)直接寫出新函數(shù)對應(yīng)的解析式;
(3)當(dāng)直線y=﹣x+m與新圖象有四個交點(diǎn)時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
(4)△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一條長為的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形。
(1)要使這兩個正方形的面積之和等于,那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A(﹣4,0),點(diǎn)E (4,0),以AO為直徑作⊙D,點(diǎn)G是⊙D上一動點(diǎn),以EG為腰向下作等腰直角三角形EGF,連接DF,則DF的最大值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com