探索研究:
(1)觀察一列數(shù)3,6,12,24…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
 
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a5=
 
,an=

(2)如果欲求1+3+32+33+…+320的值,可令S=1+3+32+33+…+320…①
將①式兩邊都乘以3,得3S=3+32+33+34+…+321…②
由②-①,可求得:S=
 
分析:分析題意和數(shù)據(jù)特點即可找到它們之間的關(guān)系.即an=3×2n-1
解答:解:根據(jù)以上分析:(1)這個常數(shù)是2;所以a5=48;an=3•2n-1

(2)根據(jù)題意可得3s-s=2s=3+32+33+34+…+321-(1+3+32+33+…+320)=-1+321
∴s=
321-1
2

故答案為(1)這個常數(shù)是2;所以a5=48;an=3•2n-1;

(2)s=
321-1
2
點評:主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運算方法進行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
2
2
;根據(jù)此規(guī)律.如果n.(n為正整數(shù))表示這個數(shù)列的第n項,那么a18=
218
218
,an=
2n
2n

(2)如果欲求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320,①
將①式兩邊同乘以3,得
3S=
3+32+33+…+320+321
3+32+33+…+320+321
,②
由②減去①式,得
S=
321-1
2
321-1
2

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an,從第二項開始每一項與前一項之比的常數(shù)為q,則an=
a1qn-1
a1qn-1
(用含a1,q,n的代數(shù)式表示),如果這個常數(shù)q≠1,那么a1+a2+a3+…+an=
a1qn-a1
q-1
a1qn-a1
q-1
(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是______;根據(jù)此規(guī)律.如果n.(n為正整數(shù))表示這個數(shù)列的第n項,那么a18=______,an=______.
(2)如果欲求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320,①
將①式兩邊同乘以3,得
3S=______,②
由②減去①式,得
S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an,從第二項開始每一項與前一項之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:內(nèi)江 題型:解答題

探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a18=______,an=______;
(2)如果欲求1+3+32+33+…+320的值,可令s=1+3+32+33+…+320
將①式兩邊同乘以3,得②
由②減去①式,得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•內(nèi)江)探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a18=______,an=______;
(2)如果欲求1+3+32+33+…+320的值,可令s=1+3+32+33+…+320
將①式兩邊同乘以3,得②
由②減去①式,得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案