23、(1)如圖1,過A,B,C三點分別作對邊BC,AC,AB的垂線;過B點作AC的平行線MN;過A作BC的平行線PQ;

(2)如圖2在平面直角體系中,描出下各點:A.(-2,1)B.(2,3)C.(-4,-3)D.(1,2)E.(0,-3)F.(-3,0)G.(0,0)H.(0,4),J.(2,2)K.(-3,-3)
分析:根據(jù)題意作圖即可.(2)中要注意描點法準確的找到點的位置.
解答:解:(1)

(2)
點評:主要考查了幾何作圖以及點的坐標的意義和在坐標系中作圖.注意橫坐標的絕對值是點到y(tǒng)軸的距離,縱坐標的絕對值是點到x軸的距離.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖1,等邊△ABC為2
3
,一邊在x上且A(1-
3
,0),AC交y軸于點,過點E作EF∥AB交BC于點F.
(1)直接寫出點B、C的坐標;
(2)若直線y=kx-1(k≠0)將四邊形EABF的面積等分,求k的值;
(3)如圖2,過點A、B、C線與y軸交于點D,M為線段OB上的一個動點,過x軸上一點G(-2,0)作DM的垂線,垂足為H,直線GH交y軸于點N,當M在線段OB上運動時,現(xiàn)給出兩個結論:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一個是正確的,請你判斷哪個結論正確,并證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:
x-3
x-2
+1=
3
2-x

(2)如圖,分別過點C、B作△ABC的BC邊上的中線AD及其延長線的垂線,垂足分別為E、F.求證:BF=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O過點B、C.圓心O在等腰直角△ABC的內部,∠BAC=90°,OA=2,BC=6,則⊙O的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線AB∥CD,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點P是平面內的一個動點,連結PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關系:
①當點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數(shù)學式).
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內錯角相等)
(兩直線平行,內錯角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內錯角相等)
(兩直線平行,內錯角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質)
即∠EPF=∠PEB+∠PFD.
②當點P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當點P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,若過點P1,P2作直線m的平行線,則∠1、∠2、∠3、∠4間的數(shù)量關系是
∠2+∠4=∠1+∠3
∠2+∠4=∠1+∠3

查看答案和解析>>

同步練習冊答案