【題目】如果一條拋物線x軸的兩個交點為A,B(點A在點B的左側,頂點為P,連接PA,PB,那么稱PAB為這條拋物線的“拋物線三角形”。

(1)請寫出“拋物線三角形”是等腰直角三角形時,拋物線的表達式(寫出一個即可);

(2)若拋物線的“拋物線三角形”是等邊三角形,求b的值;

(3)若拋物線不存在“拋物線三角形”a,b,c之間應滿足怎樣的關系式?請直接寫出關系式。

【答案】(1)“拋物線三角形”是等腰直角三角形時,拋物線的表達式可以為(答案不唯一);(2);(3).

【解析】

(1)利用等腰直角三角形的性質可知P點的縱坐標為AB的一半,據(jù)此可設出P、A、B的坐標,可寫出拋物線的表達式;
(2)過點PPH⊥ABH,由等邊三角形的性質可得到PH= AH,再用b表示出P點坐標,則可得到關于b的方程,可求得b的值;
(3)由條件可知P、A、B三點不能構成三角形,則可知A、B重合或沒有A、B兩點,即拋物線與x軸有一個或沒有交點,則可得到a、b、c的關系.

(1)不妨設拋物線的對稱軸為軸,即設拋物線解析式為

,,

為等腰直角三角形,

,即,解得.

∴“拋物線三角形”是等腰直角三角形時,拋物線的表達式可以為;

(2)如圖,過點

是等邊三角形,

,

∵拋物線的頂點坐標為,

,解得;

(3)當拋物線不存在“拋物線三角形”,

,三點不能構成三角形,即拋物線與軸有一個或沒有交點,

∴方程有兩個相等的實數(shù)根或沒有實數(shù)根,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y(x0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為9,則k的值為(

A. 3B. 6C. 9D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,經(jīng)順時針旋轉后與重合.

1)旋轉中心是點 ,旋轉了 度;

2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程有兩個不相等的實數(shù)根,m的取值范圍是

A. m<9 B. m>9 C. 0 < m < 9 D. m<9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C0,3),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=kx+b的圖象分別交x軸,y軸于A、B兩點,與反比例函數(shù)y2=的圖象交于C、D兩點,已知點C的坐標為(﹣4,﹣1),點D的橫坐標為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)直接寫出當x為何值時,y1>y2?

(3)P是反比例函數(shù)在第一象限的圖象上的點,且點P的橫坐標大于2,過點Px軸的垂線,垂足為點E,當APE的面積為3時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點落在點處,于點,連接

(1)求證:;

(2)求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育組為了了解九年級450名學生排球墊球的情況,隨機抽查了九年級部分學生進行排球墊球測試(單位:個),根據(jù)測試結果,制成了下面不完整的統(tǒng)計圖表:

組別

個數(shù)段

頻數(shù)

頻率

1

5

0.1

2

21

0.42

3

4

1)表中的數(shù)   ,   

2)估算該九年級排球墊球測試結果小于10的人數(shù);

3)排球墊球測試結果小于10的為不達標,若不達標的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.

查看答案和解析>>

同步練習冊答案