【題目】(2018鄭州模擬)如圖,拋物線過點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,直線l的解析式為,拋物線的對稱軸與線段BC交于點(diǎn)P,過點(diǎn)P作直線l的垂線,垂足為點(diǎn)H,連接OP,求的面積;
(3)把圖①中的直線向下平移4個(gè)單位長度得到直線,如圖②,直線與x軸交于點(diǎn)G.點(diǎn)P是四邊形ABCO邊上的一點(diǎn),過點(diǎn)P分別作x軸、直線l的垂線,垂足分別為點(diǎn)E、F.是否存在點(diǎn)P,使得以P、E、F為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)存在,點(diǎn)坐標(biāo)為(0,4)或或(4,6)或.
【解析】
解:(1)∵拋物線過點(diǎn),
,
解得,
∴拋物線的解析式為;
(2)∵該拋物線的對稱軸為直線
,
,
如解圖①,延長交軸于點(diǎn),∵直線的解析式為,
均為等腰直角三角形,
,
,
可得.
;
(3)存在滿足條件的點(diǎn),點(diǎn)坐標(biāo)為(0,4)或或(4,6)或時(shí),以為頂點(diǎn)的三角形是等腰三角形.
[解法提示]設(shè)直線與軸、軸分別交于點(diǎn)、點(diǎn),則,
假設(shè)存在滿足條件的點(diǎn),
(a)當(dāng)點(diǎn)在線段上時(shí),如解圖②所示,此時(shí)點(diǎn)與點(diǎn)重合,
設(shè),
則,
,
過點(diǎn)作軸于點(diǎn),
則,
,
在中,
,
若,則,解得,故此種情形不存在;
若,則
,
整理得,
即,不成立,故此種情形不存在;
若,則
,
整理得,即,解得.
;
(b)當(dāng)點(diǎn)在邊上時(shí),如解圖③,此時(shí),
若,
過點(diǎn)分別作于點(diǎn),軸于點(diǎn),
易知為等腰直角三角形,
,
,
∴將代入,
得,
,
,
.
(c)當(dāng)點(diǎn)在線段上時(shí),如解圖④,
,
∴可求得直線的解析式為
;
聯(lián)立與,解得,.
設(shè),
則,
,
.
與(a)同理,可求得
,
若,則,解得,故此種情形不存在;
若,則
,
整理得,即,解得,符合條件,此時(shí);
若,
則,
整理得,即,解得,故此種情形不存在;
(d)當(dāng)點(diǎn)在線段上時(shí),如解圖⑤所示.
的夾角為135°,
∴只可能是成立,
∴點(diǎn)在的平分線上.
設(shè)此角平分線與軸交于點(diǎn),過點(diǎn)作直線于點(diǎn),
則,,
,
解得,
,
又,
∴直線的解析式為:
,
聯(lián)立直線與直線,
求得;
(e)當(dāng)點(diǎn)在邊上時(shí),此時(shí),等腰三角形不存在;
綜上所述,存在滿足條件的點(diǎn)P,且點(diǎn)坐標(biāo)為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠A=90°,AB=3,AC=4,點(diǎn)M、Q分別是邊AB、BC上的動點(diǎn)(點(diǎn)M不與A、B重合),且MQ⊥BC,過點(diǎn)M作MN∥BC.交AC于點(diǎn)N,連接NQ,設(shè)BQ=x.
(1)是否存在一點(diǎn)Q,使得四邊形BMNQ為平行四邊形,并說明理由;
(2)當(dāng)BM=2時(shí),求x的值;
(3)當(dāng)x為何值時(shí),四邊形BMNQ的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn)為射線上一個(gè)動點(diǎn),連接,將沿折疊,點(diǎn)落在點(diǎn)處,過點(diǎn)作的垂線,分別交于點(diǎn)當(dāng)點(diǎn)為線段的三等分點(diǎn)時(shí),的長為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,取的中點(diǎn),連接,點(diǎn)關(guān)于線段的對稱點(diǎn)為點(diǎn),點(diǎn)為線段上的一個(gè)動點(diǎn),連接、、、,已知,,,,當(dāng)的值最小時(shí),則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,斜邊,是的中點(diǎn),以為圓心,線段的長為半徑畫圓心角為的扇形,弧經(jīng)過點(diǎn),則圖中陰影部分的面積為_______平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B分別在y軸和x軸上,BC⊥AB(點(diǎn)C和點(diǎn)O在直線AB的兩側(cè)),點(diǎn)C的坐標(biāo)為(4,n)過點(diǎn)C的反比例函數(shù)y=(x>0)的圖象交邊AC于點(diǎn)D(n+,3).
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團(tuán)隊(duì)協(xié)作、頑強(qiáng)拼搏的女排精神.如圖是某次比賽中墊球時(shí)的動作,若將墊球后排球的運(yùn)動路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標(biāo)系,已知運(yùn)動員墊球時(shí)(圖中點(diǎn))離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點(diǎn))越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(shí)(圖中點(diǎn))距球網(wǎng)的水平距離為2.5米,則排球運(yùn)動路線的函數(shù)表達(dá)式為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明城市”和“省級文明城區(qū)”過程中,城區(qū)污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對城區(qū)周邊污水進(jìn)行處理.已知每臺A型設(shè)備價(jià)格為12萬元,每臺B型設(shè)備價(jià)格為10萬元;1臺A型設(shè)備和2臺B型設(shè)備每周可以處理污水640噸,2臺A型設(shè)備和3臺B型設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)要想使污水處理廠購買設(shè)備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:
信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com