精英家教網 > 初中數學 > 題目詳情

【題目】某校學生志愿服務小組在學雷鋒活動中購買了一批牛奶到江陰兒童福利院看望孤兒.如果分給每位兒童5盒牛奶,那么剩下18盒牛奶;如果分給每位兒童6盒牛奶,那么最后一位兒童分不到6盒,但至少能有3盒.則這個兒童福利院的兒童最少有________個,最多有________個.

【答案】19 21

【解析】

設有x名兒童,則又牛奶5x+18盒,則若每人分6盒,則最后一個人分得的數量是(5x+18)-6(x-1)=24-x,然后根據最后一位兒童分不到6盒,但至少能有3盒列不等式組求解.

解:設有x名兒童,則又牛奶5x+18盒,則若每人分6盒,則最后一個人分得的數量是(5x+18)-6(x-1)=24-x.
根據題意得:

解得:18<x≤21.
則這個兒童福利院的兒童最少有19人,最多有21人.
故答案是:19,21.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】農經公司以30元/千克的價格收購一批農產品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關系,經過市場調查獲得部分數據如下表:

銷售價格x(元/千克)

30

35

40

45

50

日銷售量p(千克)

600

450

300

150

0


(1)請你根據表中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定p與x之間的函數表達式;
(2)農經公司應該如何確定這批農產品的銷售價格,才能使日銷售利潤最大?
(3)若農經公司每銷售1千克這種農產品需支出a元(a>0)的相關費用,當40≤x≤45時,農經公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)求證:到線段兩端距離相等的點在線段的垂直平分線上.(要求:畫出圖形,寫出已知,求證和證明過程)

2)用(1)中的結論解決:如圖,ABC中,A=30°,C=90°,BE平分ABC, 求證:點E在線段AB的垂直平分線上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過點A(﹣2,0),B(2,2),與y軸交于點C.

(1)求拋物線y=ax2+bx+2的函數表達式;
(2)若點D在拋物線y=ax2+bx+2的對稱軸上,求△ACD的周長的最小值;
(3)在拋物線y=ax2+bx+2的對稱軸上是否存在點P,使△ACP是直角三角形?若存在直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們用[a]表示不大于a的最大整數,例如:[3.5]3,[4]4,[1.5]=-2;用{a}表示大于a的最小整數,例如:{3.5}4{1}2,{2.5}=-2.解決下列問題:

(1)[5.5]等于多少,{2.5}等于多少;

(2)[x]3,寫出x的取值范圍;若{y}=-2,寫出y的取值范圍.

(3)已知xy滿足方程組,求x,y的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2 , 若S=2,則S1+S2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于實數p,q,我們用符號min{p,q}表示p,q兩數中較小的數,如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知平面直角坐標系中,點滿足

1)求的面積;

2)將線段經過水平、豎直方向平移后得到線段,已知直線經過點的橫坐標為5

①求線段平移過程中掃過的面積;

②請說明線段的平移方式,并說明理由;

③如圖2,線段上一點,直接寫出之間的數量關系.

查看答案和解析>>

同步練習冊答案