如圖,矩形ABCD的頂點(diǎn)A、D在拋物線上,B、C在x軸的正半軸上,且矩形始終在拋物線與x軸圍成的區(qū)域里.
(1)設(shè)點(diǎn)A的橫坐標(biāo)為x,試求矩形的周長(zhǎng)P關(guān)于變量x的函數(shù)表達(dá)式;
(2)當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),相應(yīng)矩形的周長(zhǎng)最大?最大周長(zhǎng)是多少?
(3)在上述這些矩形中是否存在這樣一個(gè)矩形,它的周長(zhǎng)為7?若存在,求出該矩形的各頂點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

【答案】分析:(1)根據(jù)矩形和拋物線的對(duì)稱性可知:BC=AD=OE-2x,因此求矩形的周長(zhǎng),就必須先求出E點(diǎn)的坐標(biāo),根據(jù)已知拋物線的解析式,易求得E點(diǎn)的坐標(biāo),進(jìn)而可得到BC的表達(dá)式,利用矩形的周長(zhǎng)公式即可得到關(guān)于P、x的函數(shù)關(guān)系式.
(2)將(1)題所得函數(shù)關(guān)系式化為頂點(diǎn)坐標(biāo)式,進(jìn)而可求得P的最大值及對(duì)應(yīng)的x的值.
(3)將P=7代入(1)題的函數(shù)關(guān)系式中,即可求得對(duì)應(yīng)的x的值,進(jìn)而可根據(jù)A點(diǎn)坐標(biāo)和矩形各邊長(zhǎng)的表達(dá)式求出各頂點(diǎn)的坐標(biāo).
解答:解:(1)令y=0,得,
解得x1=0,x2=4,
∴E(4,0);(2分)
=,(2分)
即P=

(2)∵(2分)
∴當(dāng)時(shí),P的最大值為;(2分)
故當(dāng)點(diǎn)A運(yùn)動(dòng)到()時(shí),矩形的周長(zhǎng)最大,且最大值為

(3)存在;(1分)
當(dāng)P=7時(shí),得
即4x2-4x-3=0,
解得,;(1分)
∵0<x<2,
;
當(dāng)時(shí),,
,.(2分)
點(diǎn)評(píng):此題主要考查了矩形、拋物線的性質(zhì),二次函數(shù)解析式的確定,二次函數(shù)最值的應(yīng)用等知識(shí),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線分別交AD和BC于點(diǎn)E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=
kx
的圖象上,若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對(duì)角線AC、BD交于點(diǎn)E,過(guò)B點(diǎn)的雙曲線y=
kx
(x>0)
恰好經(jīng)過(guò)點(diǎn)E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,∠BOC=60°,AD=3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DO以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng)到點(diǎn)O停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的對(duì)角線交于O點(diǎn),∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案