【題目】在學(xué)習(xí)了第四章《基本的平面圖形》的知識(shí)后,小明將自己手中的一副三角板的兩個(gè)直角頂點(diǎn)疊放在一起拼成如下的圖形1和圖形2.

(1)在圖1中,當(dāng)AD平分∠BAC時(shí),小明認(rèn)為此時(shí)AB也應(yīng)該平分∠FAD,請你通過計(jì)算判斷小明的結(jié)論是否正確.

(2)小明還發(fā)現(xiàn):只要AD∠BAC的內(nèi)部,當(dāng)△ABC繞直角頂點(diǎn)A旋轉(zhuǎn)時(shí),總有∠FAB=∠DAC(見圖2),請你判斷小明的發(fā)現(xiàn)是否正確,并簡述理由.

(3)在圖2中,當(dāng)∠FAC=x,∠BAD=y,請你探究xy的關(guān)系.

【答案】(1)詳見解析;(2)小明的結(jié)論正確,理由詳見解析;(3)y=180°﹣x(90<x<180°).

【解析】

(1)根據(jù)AD平分∠BAC可求出∠BAD=45°,由∠FAD=90°可求出∠FAB=45°,即可證明AB平分∠FAD.(2)根據(jù)∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,即可證明∠FAB=∠DAC.(3)根據(jù)∠FAB=∠FAC﹣90°=90°-∠BAD即可得出答案.

(1)小明的結(jié)論正確,理由如下:

∵AD平分∠BAC,∠BAD+∠CAD=90°,

∴∠BAD=∠CAD=45°.

∵∠FAB+∠BAD=90°,

∴∠FAB=45°,

∴∠FAB=∠BAD,

∴AB平分∠FAD.

(2)小明的結(jié)論正確,理由如下:

∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,

∴∠FAB=∠DAC.

(3)∵∠FAC=∠FAB+90°,

∴∠FAB=∠FAC﹣90°.

∵∠BAD=90°﹣∠FAB,

∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】右圖是老北京城一些地點(diǎn)的分布示意圖.在圖中,分別以正東、正北方向?yàn)?/span>軸、軸的正方向建立平面直角坐標(biāo)系,有如下四個(gè)結(jié)論:

①當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為()時(shí),表示左安門的點(diǎn)的坐標(biāo)為(5,);

②當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(10,);

③當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(1,1),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(,);

④當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(,).

上述結(jié)論中,所有正確結(jié)論的序號(hào)是

A. ①②③ B. ②③④ C. ①④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】剪紙是中國特有的民間藝術(shù).在如圖所示的四個(gè)剪紙圖案中.既是軸對稱圖形又是中心對稱圖形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的兩個(gè)正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),MBC邊上一個(gè)動(dòng)點(diǎn),聯(lián)結(jié)AM,MF,MFCG于點(diǎn)P,將△ABM繞點(diǎn)A旋轉(zhuǎn)至△ADN,將△MEF繞點(diǎn)F旋轉(zhuǎn)恰好至△NGF.給出以下三個(gè)結(jié)論:①∠AND=∠MPC; ②△ABM≌△NGF;③S四邊形AMFN=a2+b2

其中正確的結(jié)論是_____(請?zhí)顚懶蛱?hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊BCD中,DFBC于點(diǎn)F,點(diǎn)A為直線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針方向旋轉(zhuǎn)60°BE,連接EC

(1)當(dāng)點(diǎn)A在線段DF的延長線上時(shí),

求證:DA=CE

判斷DECEDC的數(shù)量關(guān)系,并說明理由;

(2)當(dāng)DEC=45°時(shí),連接AC,求BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長交⊙O于點(diǎn)E,連接EC.若AB=8,CD=2,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DBC的中點(diǎn),過點(diǎn)DBC的垂線交∠BAC的平分線于點(diǎn)E,EF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G.

(1)求證:BF=CG;

(2)若AB=10,AC=6,求線段CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DAC上一點(diǎn)(CD>AD),按要求完成下列各小題.(保留作圖痕跡,不寫作法,標(biāo)明各頂點(diǎn)字母)

(1)連接BD,求作DEF(點(diǎn)E在線段CD上,點(diǎn)F在線段AC的右側(cè)),使得DEF≌△DAB;

(2)(1)的條件下,作∠EFH=ABC,交CA的延長線于點(diǎn)H,并證明HFBC.

查看答案和解析>>

同步練習(xí)冊答案