【題目】如圖,順次連接腰長為2的等腰直角三角形各邊中點得到第1個小三角形,再順次連接所得的小三角形各邊中點得到第2個小三角形,如此操作下去,則第n個小三角形的面積為

【答案】
【解析】解:記原來三角形的面積為s,第一個小三角形的面積為s1 , 第二個小三角形的面積為s2 , …, ∵s1= s= s,
s2= s= s,
s3= s,
∴sn= s= 22=
所以答案是
【考點精析】通過靈活運用等腰直角三角形和三角形中位線定理,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.

(1)求拋物線的表達式;
(2)設四邊形ABEF的面積為S,請求出S與m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)如圖2,過點F作FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= 的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BE⊥AC,垂足E在CA的延長線上,DF⊥AC,垂足F在AC的延長線上,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+c的開口向上,且經(jīng)過點A(0,
(1)若此拋物線經(jīng)過點B(2,﹣ ),且與x軸相交于點E,F(xiàn).
①填空:b=(用含a的代數(shù)式表示);
(2)若a= ,當0<x<1,拋物線上的點到x軸距離的最大值為3時,求b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定,中、小學生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機調查了轄區(qū)內300名初中學生.根據(jù)調查結果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請根據(jù)上述信息解答下列問題:

(1)本次調查數(shù)據(jù)的眾數(shù)落在組內,中位數(shù)落在組內;
(2)該轄區(qū)約有18000名初中學生,請你估計其中達到國家規(guī)定體育活動時間的人數(shù).

查看答案和解析>>

同步練習冊答案