【題目】如圖,菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EG⊥CD于點(diǎn)G,則∠FGC=

【答案】55°
【解析】解:延長GF,交AB的延長線于點(diǎn)P. ∵F為BC的中點(diǎn),
∴BF=CF,
∵四邊形ABCD為菱形,
∴AB∥DC,
∴∠PBF=∠GCF,∠BFP=∠CFG,
在△BPF與△CGF中,

∴△BPF≌△CGF,
∴GF=PF,
∴F為PG中點(diǎn).
又∵由題可知,∠BEG=90°,
∴EF= PG,
∵GF= PG,
∴EF=GF,
∴∠FEG=∠EGF,
∵∠BEG=∠EGC=90°,
∴∠BEG﹣∠FEG=∠EGC﹣∠EGF,即∠BEF=∠FGC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F(xiàn)分別為AB,BC的中點(diǎn),
∴BE=BF,∠BEF=∠BFE= (180°﹣70°)=55°,
∴∠FGC=55°.
所以答案是55°.

【考點(diǎn)精析】掌握菱形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3),B(6,3),連結(jié)AB,如果點(diǎn)P在直線y=x﹣1上,且點(diǎn)P到直線AB的距離小于1,那么稱點(diǎn)P是線段AB的“鄰近點(diǎn)”.

(1)判斷點(diǎn)C( , )是否是線段AB的“鄰近點(diǎn)”
(2)若點(diǎn)Q(m,n)是線段AB的“鄰近點(diǎn)”,則m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式x2+xy因式分解的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子正確的是(  )

A.x6÷x3=x2
B.(﹣1)1=﹣1
C.4m2=
D.(a24=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3x2x2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】簡便計(jì)算:7.292﹣2.712=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,再解決問題: 閱讀材料:數(shù)學(xué)上有一種根號(hào)內(nèi)又帶根號(hào)的數(shù),它們能通過完全平方公式及二次根式的性質(zhì)化去一層根號(hào).
例如: = = = =|1+ |=1+
(1)解決問題: 模仿上例的過程填空:
= ====
(2)根據(jù)上述思路,試將下列各式化簡. ①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的不等式-k-x+6>0的正整數(shù)解為1,2,3,那么正整數(shù)k的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,ABC=60°,則四邊形EFGH的面積為__cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案