試題分析:(1)過點A作AG//CD交BC于點G,AP⊥BC于點P,AQ⊥CD于點Q,連接AC,則有∠APG=∠AQE=90°,由AD//BC可得四邊形AGCD是平行四邊形,再結合AD=CD可得
AGCD是菱形,即可得到∠ACP=∠ACD,則可得AP=AQ,再有AB=AE,可證得Rt△APB≌Rt△AQE,從而可以證得結論;
(2)在HE上截取HK=CH,連接MK、AC,由∠KHC=60°可得△KHC是等邊三角形,∠AHC=120°,即可得到CH=CK,∠HKC=60°,由AB=AE,∠B=∠E,BM=CE可證得△ABM≌△AEC,即得∠BAM=∠EAC,AM=AC,即可得到△AMC是等邊三角形,則可得AC=CM,∠HCK=∠ACM=60°,從而可以證得△MCK≌△ACH,即得MK=AH,∠AHC=∠MKC=120°,則可得到∠MKF=120°-60°=60°,由MH⊥AH可得∠HMK=30°,設CH=CK=HK=
,在Rt△MHK中,則有MK=AH=
,再在Rt△MHK中,根據勾股定理可得MH=
,利用面積法易求MF=4,即可得到AM=MC=4+2=6,在Rt△AHM中根據勾股定理求解即可.
解:(1)過點A作AG//CD交BC于點G,AP⊥BC于點P,AQ⊥CD于點Q,連接AC
則有∠APG=∠AQE=90°
∵AD//BC
∴四邊形AGCD是平行四邊形
∵AD=CD
∴
AGCD是菱形
∴∠ACP=∠ACD
∴AP=AQ
∵AB=AE
∴Rt△APB≌Rt△AQE
∴∠B=∠E;
(2)在HE上截取HK=CH,連接MK、AC
∵∠KHC=60°
∴△KHC是等邊三角形,∠AHC=120°
∴CH=CK,∠HKC=60°
∵AB=AE,∠B=∠E,BM=CE
∴△ABM≌△AEC
∴∠BAM=∠EAC,AM=AC
∵∠BAE=60°
∴∠MAC=60°
∴△AMC是等邊三角形
∴AC=CM,∠HCK=∠ACM=60°
∴∠MCK=∠ACH
∴△MCK≌△ACH
∴MK=AH,∠AHC=∠MKC=120°
∴∠MKF=120°-60°=60°
∵MH⊥AH
∴∠HMK=30°
∴設CH=CK=HK=
在Rt△MHK中,則有MK=AH=
在Rt△MHK中,
∴MH=
利用面積法易求:MF=4
∴AM=MC=4+2=6
在Rt△AHM中,
∴
解得:
,
(舍去)
∴AH=2
=
.
點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現,需特別注意.