如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是( 。
A、DE=DO B、AB=AC
C、CD=DB D、AC∥OD
:解:當AB=AC時,如圖:連接AD,
∵AB是⊙O的直徑,
∴AD⊥BC,
∴CD=BD,
∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
所以B正確.
當CD=BD時,AO=BO,∴OD是△ABC的中位線,
∴OD∥AC
∵DE⊥AC
∴DE⊥OD
∴DE是⊙O的切線.
所以C正確.
當AC∥OD時,∵DE⊥AC,∴DE⊥OD.
∴DE是⊙O的切線.
所以D正確.
故選A.
【解析】:根據(jù)AB=AC,連接AD,利用圓周角定理可以得到點D是BC的中點,OD是△ABC的中位線,OD∥AC,然后由DE⊥AC,得到∠ODE=90°,可以證明DE是⊙O的切線.
根據(jù)CD=BD,AO=BO,得到OD是△ABC的中位線,同上可以證明DE是⊙O的切線.
根據(jù)AC∥OD,AC⊥DE,得到∠EDO=90°,可以證明DE是⊙O的切線.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com