如圖1,在平面直角坐標系中,△AOB是直角三角形,∠AOB=90°,斜邊AB與y軸交于點C.
(1)若∠A=∠AOC,求證:∠B=∠BOC;
(2)如圖2,延長AB交x軸于點E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖3,OF平分∠AOM,∠BCO的平分線交FO的延長線于點P,∠A=40°,當△ABO繞O點旋轉(zhuǎn)時(斜邊AB與y軸正半軸始終相交于點C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.

(1)證明:∵△AOB是直角三角形,
∴∠A+∠B=90°,∠AOC+∠BOC=90°,
∵∠A=∠AOC,
∴∠B=∠BOC;

解:(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,
∴∠A=∠DOB,
又∵∠DOB=∠EOB,∠A=∠E,
∴∠DOB=∠EOB=∠OAE=∠OEA,
∵∠DOB+∠EOB+∠OEA=90°,
∴∠A=30°;

(3)∠P的度數(shù)不變,∠P=25°.理由如下:(只答不變不得分)
∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC,
又∵OF平分∠AOM,CP平分∠BCO,
∴∠FOM=45°-∠AOC ①,∠PCO=∠A+∠AOC ②,
①+②得:∠PCO+∠FOM=45°+∠A,
∴∠P=180°-(∠PCO+∠FOM+90°)
=180°-(45°+∠A+90°)
=180°-(45°+20°+90°)
=25°.
分析:(1)由直角三角形兩銳角互余及等角的余角相等即可證明;
(2)由直角三角形兩銳角互余、等量代換求得∠DOB=∠EOB=∠OAE=∠E;然后根據(jù)外角定理知∠DOB+∠EOB+∠OEA=90°;從而求得∠DOB=30°,即∠A=30°;
(3)由角平分線的性質(zhì)知∠FOM=45°-∠AOC ①,∠PCO=∠A+∠AOC ②,根據(jù)①②解得∠PCO+∠FOM=45°+∠A,最后根據(jù)三角形內(nèi)角和定理求得旋轉(zhuǎn)后的∠P的度數(shù).
點評:本題綜合考查了三角形內(nèi)角和定理、坐標與圖形的性質(zhì).解答時,需注意,△ABO旋轉(zhuǎn)后的形狀與大小均無變化.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案