【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長(zhǎng).
【答案】
(1)解:如答圖1,連接OG.
∵EG為切線,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由為:
連接GD,如答圖2所示.
∵KG2=KDGE,即 = ,
∴ = ,又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)連接OG,OC,如答圖3所示.
sinE=sin∠ACH= ,設(shè)AH=3t,則AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.
在Rt△AHK中,根據(jù)勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2 )2,解得t= ,
設(shè)⊙O半徑為r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得r= t= .
∵EF為切線,∴△OGF為直角三角形,
在Rt△OGF中,OG=r= ,tan∠OFG=tan∠CAH= = ,
∴FG= = = .
【解析】(1)如答圖1,連接OG.根據(jù)切線性質(zhì)及CD⊥AB,可以推出連接∠KGE=∠AKH=∠GKE,根據(jù)等角對(duì)等邊得到KE=GE;(2)AC與EF平行,理由為:如答圖2所示,連接GD,由∠KGE=∠GKE,及KG2=KDGE,利用兩邊對(duì)應(yīng)成比例且夾角相等的兩三角形相似可得出△GKD與△EKG相似,又利用同弧所對(duì)的圓周角相等得到∠C=∠AGD,可推知∠E=∠C,從而得到AC∥EF;(3)如答圖3所示,連接OG,OC.首先求出圓的半徑,根據(jù)勾股定理與垂徑定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為AB的中點(diǎn),F(xiàn)為AD上一點(diǎn),EF交AC于G,AF=2cm,DF=4cm,AG=3cm,則AC的長(zhǎng)為( )
A.9cm
B.14cm
C.15cm
D.18cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心, AC長(zhǎng)為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形AOB的直角頂點(diǎn)A在第四象限,頂點(diǎn)B(0,﹣2),點(diǎn)C(0,1),點(diǎn)D在邊AB上,連接CD交OA于點(diǎn)E,反比例函數(shù) 的圖象經(jīng)過點(diǎn)D,若△ADE和△OCE的面積相等,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車從A開往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長(zhǎng)為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小賢為了體驗(yàn)四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個(gè)矩形框架ABCD,B與D兩點(diǎn)之間用一根橡皮筋拉直固定,然后向右扭動(dòng)框架,觀察所得四邊形的變化,下列判斷錯(cuò)誤的是( )
A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長(zhǎng)度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長(zhǎng)不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com