【題目】如圖,在△BDE中,∠BDE=90°,BD=4,點(diǎn)D的坐標(biāo)是(6,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點(diǎn)C在BD上,則旋轉(zhuǎn)中心的坐標(biāo)為__________.
【答案】
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì),AB與BD的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心P,連接PD,過(guò)P作PF⊥x軸于F,再根據(jù)點(diǎn)C在BD上確定出∠PDB=45°并求出PD的長(zhǎng),然后求出∠PDO=60°,根據(jù)直角三角形兩銳角互余求出∠DPF=30°,然后解直角三角形求出點(diǎn)P的坐標(biāo).
如圖,AB與BD的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心P,連接PD,過(guò)P作PF⊥x軸于F,
∵點(diǎn)C在BD上,
∴點(diǎn)P到AB、BD的距離相等,都是BD,即,
∴∠PDB=45°,,
∵∠BDO=15°,
∴∠PDO=45°+15°=60°,
∴∠DPF=30°,
∴DF=PD=,,
∵點(diǎn)D的坐標(biāo)是(6,0),
∴OF=OD﹣DF=,
∴旋轉(zhuǎn)中心的坐標(biāo)為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)是2,是高所在直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動(dòng)過(guò)程中,線段長(zhǎng)度的最小值是( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,先將正方形紙片兒對(duì)折,折痕為MN,再把點(diǎn)B折疊在折痕MN上,折痕為AE,點(diǎn)E在CB上,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為H,沿AH和DH剪下得到三角形ADH,則下列選項(xiàng)錯(cuò)誤的是( )
A. DH=AD B. AH=DH C. NE=BE D. DM=DH
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且,.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求面積的最大值;
(3)在(2)中面積最大的條件下,過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線,作BM=AB并與AP交于點(diǎn)M,延長(zhǎng)MB交AC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD.
(1)求證:AB=BE;
(2)若⊙O的半徑R=2.5,MB=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點(diǎn)稱為斜坐標(biāo)系的原點(diǎn),如圖1,經(jīng)過(guò)平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點(diǎn)M,N.點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(duì)(x,y)稱為點(diǎn)P的斜坐標(biāo),記為P(x,y)
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點(diǎn)D,
OA=2,OC=1.
①點(diǎn)A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A ,B ,C .
②設(shè)點(diǎn)P(x,y)在經(jīng)過(guò)O、B兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為 .
③設(shè)點(diǎn)Q(x,y)在經(jīng)過(guò)A、D兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為 .
(2)若ω=120°,O為坐標(biāo)原點(diǎn).
①如圖3,圓M與y軸相切原點(diǎn)O,被x軸截得的弦長(zhǎng)OA=2,求圓M的半徑及圓心M的斜坐標(biāo).
②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個(gè)點(diǎn)到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y= -x+3與x軸,y軸分別相交于點(diǎn)B、C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸為直線x=2.
(1)求A點(diǎn)的坐標(biāo);
(2)求該拋物線的函數(shù)表達(dá)式;
(3)連結(jié)AC.請(qǐng)問(wèn)在x軸上是否存在點(diǎn)Q,使得以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC 相似,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點(diǎn),其中點(diǎn)A坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接AC,點(diǎn)P在拋物線上,且滿足∠PAB=2∠ACO.求點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)Q為x軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對(duì)稱軸與x軸的交點(diǎn),直線AQ、BQ分別交拋物線的對(duì)稱軸于點(diǎn)M、N.請(qǐng)問(wèn)DM+DN是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com