已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)直接寫出線段EG與CG的數(shù)量關系;
(2)將圖1中△BEF繞B點逆時針旋轉45º,如圖2所示,取DF中點G,連接EG,CG.你在(1)中得到的結論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)將圖1中△BEF繞B點旋轉任意角度,如圖3所示,再連接相應的線段,問(1)中的結論是否仍然成立?(不要求證明)
解:(1)CG=EG
(2)(1)中結論沒有發(fā)生變化,即EG=CG.
證明:連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點.
在△DAG與△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴ △DAG≌△DCG.
∴ AG=CG.
在△DMG與△FNG中,
∵ ∠DGM=∠FGN,F(xiàn)G=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN.
在Rt△AMG 與Rt△ENG中,
∵ AM=EN, MG=NG,
∴ △AMG≌△ENG.
∴ AG=EG
∴ EG=CG.
(3)(1)中的結論仍然成立.
【解析】本題主要是利用正方形的性質和三角形全等來證明線段相等。難點在于正確的做出輔助線。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com