已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.

(1)直接寫出線段EG與CG的數(shù)量關系;

(2)將圖1中△BEF繞B點逆時針旋轉45º,如圖2所示,取DF中點G,連接EG,CG.你在(1)中得到的結論是否發(fā)生變化?寫出你的猜想并加以證明.  

(3)將圖1中△BEF繞B點旋轉任意角度,如圖3所示,再連接相應的線段,問(1)中的結論是否仍然成立?(不要求證明)

 

【答案】

解:(1)CG=EG

(2)(1)中結論沒有發(fā)生變化,即EG=CG.

證明:連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點.

在△DAG與△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴ △DAG≌△DCG.

∴ AG=CG.

在△DMG與△FNG中,

∵ ∠DGM=∠FGN,F(xiàn)G=DG,∠MDG=∠NFG,

∴ △DMG≌△FNG.

∴ MG=NG

  在矩形AENM中,AM=EN.

在Rt△AMG 與Rt△ENG中,

∵ AM=EN, MG=NG,

∴ △AMG≌△ENG.

∴ AG=EG

∴ EG=CG.

(3)(1)中的結論仍然成立.

【解析】本題主要是利用正方形的性質和三角形全等來證明線段相等。難點在于正確的做出輔助線。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知正方形ABCD中,對角線BD長為8,則正方形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD中,邊長為10厘米,點E在AB邊上,BE=6厘米.
(1)如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPE與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPE與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動,求經過多長時間點P與點Q第一次在正方形ABCD邊上的何處相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長沙)如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EG•BG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正方形ABCD中,BD是對角線,BE平分∠DBC交DC于E點,若CE=1,則AB=
2
+1
2
+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知正方形ABCD中的△DCF可以經過旋轉得到△ECB.
(1)圖中哪個點是旋轉中心?
(2)按什么方向旋轉?旋轉角是多少度?
(3)若∠ECB=30°,求∠FCB的度數(shù).

查看答案和解析>>

同步練習冊答案