【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點P1、P2在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點A2的坐標(biāo)是____________

【答案】(4,0)

【解析】

首先根據(jù)等腰直角三角形的性質(zhì),知點P1的橫、縱坐標(biāo)相等,再結(jié)合雙曲線的解析式得到點P1的坐標(biāo)是(2,2),則根據(jù)等腰三角形的三線合一求得點A1的坐標(biāo);同樣根據(jù)等腰直角三角形的性質(zhì)、點A1的坐標(biāo)和雙曲線的解析式求得A2點的坐標(biāo).

根據(jù)等腰直角三角形的性質(zhì),可設(shè)點P1(a,a),

又∵y=,a2=4,a=±2(負(fù)值舍去),

再根據(jù)等腰三角形的三線合一,A1的坐標(biāo)是(4,0),

設(shè)點P2的坐標(biāo)是(4+b,b),又∵y=,b(4+b)=4,

b2+4b4=0,

又∵b>0,b=22,

再根據(jù)等腰三角形的三線合一,

4+2b=4+44=4

∴點A2的坐標(biāo)是(4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O直徑,⊙OAC的中點D,DEBC,垂足為E.

(1)由這些條件,你能得出哪些結(jié)論?(要求:不準(zhǔn)標(biāo)其他字母,找結(jié)論過程中所連的輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程,寫出4個結(jié)論即可)

(2)若∠ABC為直角,其他條件不變,除上述結(jié)論外你還能推出哪些新的正確結(jié)論?并畫出圖形.(要求:寫出6個結(jié)論即可,其他要求同(1))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過點B,且ABx軸.

(1)求a和k的值;

(2)過點B作MNOA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的等邊三角形,.有下列四個結(jié)論:①;②;③直線垂直平分線段;④四邊形是軸對稱圖形.其中正確的結(jié)論有_____.(把正確結(jié)論的序號填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉辦網(wǎng)絡(luò)安全知識答題競賽,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

初中部

a

85

b

s初中2

高中部

85

c

100

160

(1)根據(jù)圖示計算出a、b、c的值;

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個隊的決賽成績較好?

(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸上,已知點A(2,0),點C(10,4),雙曲線經(jīng)過點D.

(1)求菱形ABCD的邊長;

(2)求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖1,若,點內(nèi)部, , ,求的度數(shù).

(2)如圖2,在ABCD的前提下,將點移到、外部,則、之間有何數(shù)量關(guān)系?請證明你的結(jié)論.

(3)如圖3,寫出、、之間的數(shù)量關(guān)系?(不需證明)

(4)如圖4,求出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C03).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最?如果存在,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代數(shù)學(xué)專著,在數(shù)學(xué)上有其獨到的成就,不僅最早提到了分?jǐn)?shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數(shù)、雞的價格各是多少?請解答上述問題.

查看答案和解析>>

同步練習(xí)冊答案