如圖,菱形在平面直角坐標(biāo)系中的位置如圖所示,( ),則點(diǎn)的坐標(biāo)為
A.B.
C.D.
C
作CD⊥x軸于點(diǎn)D,
∵四邊形OABC是菱形,OC=,
∴OA=OC=又∵∠AOC=45°∴△OCD為等腰直角三角形,
∵OC=,∴OD=CD=OC×sin∠COD=OC×sin45°=1,
則點(diǎn)C的坐標(biāo)為(1,1),又∵BC=OA=,
∴B的橫坐標(biāo)為OD+BC=1+,B的縱坐標(biāo)為CD=1,
則點(diǎn)B的坐標(biāo)為(+1,1).
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

小題1:求AD的長(zhǎng);
小題2:設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式, 并求自變量的取值范圍
小題3:探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長(zhǎng);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,AD∥BC,中位線EF與對(duì)角線BD交于點(diǎn)G。若EG﹕GF=2﹕3,且AD=8,則BC的長(zhǎng)是(    )
A.12B.24C.6D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖,直線d過正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線d的距離分別是和2,求正方形ABCD的對(duì)角線AC的長(zhǎng).(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰△OBD中,OD=BD,△OBD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)
一定角度后得到△OAC,此時(shí)正好B、D、C在同一直線上,
且點(diǎn)D是BC的中點(diǎn).

小題1:求△OBD旋轉(zhuǎn)的角度
小題2:求證:四邊形ODAC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,AB//CD,AD=BC,AB=5,
CD=2,∠A=60°,則腰AD的長(zhǎng)為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,則四邊形ABCD的面積為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在長(zhǎng)方形中畫出5條線,把它分成的塊數(shù)與畫線的方式有直接關(guān)系.按如圖1的方式畫線,可以把它分成10塊.
小題1:請(qǐng)你在圖2中畫出5條線,使得把這個(gè)長(zhǎng)方形分成的塊數(shù)最少(重合的線只看做一條),最少可分成         塊;
小題2:請(qǐng)你在圖2中畫出5條線,使得把這個(gè)長(zhǎng)方形分成的塊數(shù)最多,最多可分成         塊.
(畫出圖形不寫畫法和理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在四邊形ABCD中,AD=a,CD=b,點(diǎn)E在射線BA上,點(diǎn)F在射線BC上.

觀察計(jì)算:
(1)如圖①,若四邊形ABCD是矩形,E是AB的中點(diǎn).F是BC的中點(diǎn),則四邊形DEBF   的面積S四邊形DEBF=_______.
(2)若四邊形ABCD是平行四邊形,E是AB的中點(diǎn),F(xiàn)是BC的中點(diǎn),則S四邊形DEBF:S四邊形ABCD=_______.
(3)如圖②,若四邊形ABCD是平行四邊形,且BE:AB=2:3,BF:BC=2:3,則S四邊形DEBF:S四邊形ABCD=_______.
探索規(guī)律:
如圖③,在四邊形ABCD中,若BE:AB=n:m,BF:BC=n:m,試猜想S四邊形DEBF:S四邊形ABCD=_______,請(qǐng)說明理由.
 解決問題:
 如圖④,某小區(qū)角落有一四邊形空地,為了充分利用空間,美化環(huán)境,想把它沿兩側(cè)墻壁改造為一塊綠地,使綠地面積是原空地面積的3倍.請(qǐng)分別在兩側(cè)墻壁上確定點(diǎn)E、F,畫出改造線DE、DF,并寫出作法.

查看答案和解析>>

同步練習(xí)冊(cè)答案