【題目】已知拋物線y=ax2+cx軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且P(1,﹣3),B(4,0)

(1)點(diǎn)A的坐標(biāo)是   ;

(2)求該拋物線的解析式;

(3)直接寫出該拋物線的頂點(diǎn)C的坐標(biāo).

【答案】(1)(﹣4,0);(2)y= x2 ;(3)頂點(diǎn)C的坐標(biāo)是(0,﹣).

【解析】

(1)由題意可知該拋物線的對稱軸是軸,點(diǎn)與點(diǎn)關(guān)于軸對稱,即可求出點(diǎn)坐標(biāo);(2),代入拋物線解析式中,利用待定系數(shù)法即可求解拋物線的解析式;(3)根據(jù)(2)中拋物線的解析式,可得頂點(diǎn)坐標(biāo).

解:(1)∵該拋物線的對稱軸是軸,

∴點(diǎn)與點(diǎn)關(guān)于軸對稱,

,

;

(2)把點(diǎn),代入

,

解得,

∴該拋物線的解析式為2

(3)(2)知,該拋物線的解析式為2,則頂點(diǎn)C的坐標(biāo)是

故答案為:(1);(2)2;(3)頂點(diǎn)的坐標(biāo)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)E在線段AC上,連接BE,點(diǎn)D在直線BC上,且CE=CD,連接ED、AD,點(diǎn)FBE的中點(diǎn),連接FAFD

1)若CD=6,BC=10,求BEC的面積;

2)當(dāng)AE=CE時,求證:AD=2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分、分別是上的動點(diǎn),當(dāng)最小時,的度數(shù)為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=AC,BAC=50°,PBC邊上一點(diǎn),ABP繞點(diǎn)A逆時針旋轉(zhuǎn)50°,點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為點(diǎn)P′.

(1)畫出旋轉(zhuǎn)后的三角形;

(2)連接PP′,若∠BAP=20°,求∠PP′C的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.

(1)如圖①,M為邊AC上一點(diǎn),則BD、MF的位置關(guān)系是 ;

如圖②,M為邊AC反向延長線上一點(diǎn),則BD、MF的位置關(guān)系是 ;

如圖③,M為邊AC延長線上一點(diǎn),則BD、MF的位置關(guān)系是 ;

(2)請就圖①、圖②、或圖③中的一種情況,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158160,154,158170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【本小題滿分9分】某校組織了一次初三科技小制作比賽,有AB、C、D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖和圖兩幅尚不完整的統(tǒng)計圖中.

(1)B班參賽作品有多少件?

(2)請你將圖的統(tǒng)計圖補(bǔ)充完整;

(3)通過計算說明,哪個班的獲獎率高?

(4)將寫有AB、CD四個字母的完全相同的卡片放人箱中,從中一次隨機(jī)抽出兩張卡片,求抽到AB兩班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在直線上,過點(diǎn)軸交直線于點(diǎn),以點(diǎn)為直角頂點(diǎn),為直角邊在的右側(cè)作等腰直角,再過點(diǎn)軸,分別交直線,兩點(diǎn),以點(diǎn)為直角頂點(diǎn),為直角邊在的右側(cè)作等腰直角按此規(guī)律進(jìn)行下去,則等腰直角的面積為_______,等腰直角的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.

查看答案和解析>>

同步練習(xí)冊答案