精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有
①∠A+∠B=90°
②AB2=AC2+BC2

④CD2=ADBD.

【答案】①②④
【解析】解:①∵三角形內角和是180°,由①知∠A+∠B=90°,

∴∠ACB=180°﹣(∠A+∠B)=180°﹣90°=90°,

∴△ABC是直角三角形.所以答案是:項①正確.②AB,AC,BC分別為△ABC三個邊,由勾股定理的逆定理可知,②正確.③題目所給的比例線段不是△ACB和△CDB的對應邊,且夾角不相等,無法證明△ACB與△CDB相似,也就不能得到∠ACB是直角,故③錯誤;④若△ABC是直角三角形,已知CD⊥AB,

又∵CD2=ADBD,(即

∴△ACD∽△CBD

∴∠ACD=∠B

∴∠ACB=∠ACD+∠DCB=∠B+∠DCB=90°

△ABC是直角三角形

∴所以答案是:項④正確;

所以答案是:①②④.

【考點精析】通過靈活運用勾股定理的逆定理和相似三角形的判定與性質,掌握如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度數.

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點P在一次函數y=kx+b(k,b為常數,且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數y=kx+b的圖象上.
(1)k的值是
(2)如圖,該一次函數的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數y= 圖象交于C,D兩點(點C在第二象限內),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若 = ,則b的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=ACAHBC,點EAH上一點,延長AH至點F,使FH=EH.

(1)求證:四邊形EBFC是菱形;

(2)如果∠BAC=ECF,求證:ACCF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線AC,BD交于點O,點E,F分別是OB,OC上的動點.當動點E,F滿足BE=CF時.

(1)寫出所有以點EF為頂點的全等三角形;(不得添加輔助線)

(2)求證:AEBF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,ADABC的角平分線,DEABDFAC,垂足分別為E,F,則下列四個結論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到AB,AC的距離相等;③BDCD,ADBC;④∠BDECDF.其中正確的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1 , 作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1 , 它的面積記作S2 , 照此規(guī)律作下去,則S1= , S2017=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是等邊三角形,DAB邊上一點,以CD為邊作等邊CDE,使點E、A在直線DC的同側,連接AE,判斷AEBC的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求證:在直角三角形中至少有一個角不大于45°.

已知:如圖所示,△ABC中,∠C=90°,求證:∠A,∠B中至少有一個不大于45°.

證明:假設__________,則∠A__________45°,∠B______45°. ∴∠A+B+C>45°+ _______+__________,這與________________________相矛盾. 所以___________不能成立,所以∠A,∠B中至少有一個角不大于45°.

查看答案和解析>>

同步練習冊答案