在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數(shù).
(2)若∠CEF=135°,求證:EF∥BC.
分析:(1)由圖示知∠DCE=∠DCB-∠ECB,由∠B=30°,CD⊥AB于D,利用內(nèi)角和定理,求出∠DCB的度數(shù),又由角平分線定義得∠ECB=
1
2
∠ACB,則∠DCE的度數(shù)可求;
(2)根據(jù)∠CEF+∠ECB=180°,由同旁內(nèi)角互補(bǔ),兩直線平行可以證明EF∥BC.
解答:解:∵∠B=30°,CD⊥AB于D,
∴∠DCB=90°-∠B=60°.
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB=
1
2
∠ACB=45°,
∴∠DCE=∠DCB-∠ECB=60°-45°=15°;

(2)∵∠CEF=135°,∠ECB=
1
2
∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC.
點(diǎn)評(píng):本題主要考查三角形內(nèi)角和定理,角平分線的定義,平行線的判定,解答的關(guān)鍵是溝通未知角和已知角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,則斜邊AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角△ABC中,∠C=90°,若AB=5,AC=4,則tan∠B=( 。
A、
3
5
B、
4
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠C=90°,AB的垂直平分線交AB于D,交AC于F,且BE平分∠ABC,則∠A=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠A=90°,BC邊上的垂直平分線交AC于點(diǎn)D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,則△BDE的周長為
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案