【題目】(1)如圖(1),在△ABC,AB=AC,O為△ABC內(nèi)一點(diǎn),且OB=OC,求證:直線AO垂直平分BC.以下是小明的證題思路,請(qǐng)補(bǔ)全框圖中的分析過程.
(2)如圖(2),在△ABC中,AB=AC,點(diǎn)D、E分別在AB、AC上,且BD=CE.請(qǐng)你只用無(wú)刻度的直尺畫出BC邊的垂直平分線(不寫畫法,保留畫圖痕跡).
(3)如圖(3),在五邊形ABCDE中,AB=AE,BC=DE,∠B=∠E,請(qǐng)你只用無(wú)刻度的直尺畫出CD邊的垂直平分線,并說(shuō)明理由.
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
試題分析:(1)根據(jù)線段垂直平分線的性質(zhì)定理的逆定理,只要AB=AC,OB=OC即可說(shuō)明直線AO垂直平分BC;
(2)連結(jié)BE、CD相交于點(diǎn)O,則直線AO為BC邊的垂直平分線;
(3)連結(jié)BD、CE相交于點(diǎn)O,則直線AO為CD邊的垂直平分線.先證明ABC≌△AED得到AC=AD,∠ACB=∠ADE,根據(jù)等腰三角形的性質(zhì)得∠ACD=∠ADC,所以∠BCD=∠EDC,再證明△BCD≌△ECD,則∠BDC=∠ECD,所以O(shè)D=OC,于是根據(jù)線段垂直平分線定理的逆定理即可判斷直線AO為CD邊的垂直平分線.
解:(1)
(2)如圖(2),AO為所作;
(3)如圖(3),AO為所作.
在△ABC和△AED中
,
∴△ABC≌△AED,
∴AC=AD,∠ACB=∠ADE,
∴∠ACD=∠ADC,
∴∠BCD=∠EDC,
在△BCD和△EDC中,
,
∴△BCD≌△ECD,
∴∠BDC=∠ECD,
∴OD=OC,
∴AO垂直平分CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點(diǎn)D在線段AB上,AD=2.點(diǎn)P,Q以相同的速度從D點(diǎn)同時(shí)出發(fā),點(diǎn)P沿DB方向運(yùn)動(dòng),點(diǎn)Q沿DA方向到點(diǎn)A后立刻以原速返回向點(diǎn)B運(yùn)動(dòng).以PQ為直徑構(gòu)造⊙O,過點(diǎn)P作⊙O的切線交折線AC﹣CB于點(diǎn)E,將線段EP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到EF,過F作FG⊥EP于G,當(dāng)P運(yùn)動(dòng)到點(diǎn)B時(shí),Q也停止運(yùn)動(dòng),設(shè)DP=m.
(1)當(dāng)2<m≤8時(shí),AP=,AQ=.(用m的代數(shù)式表示)
(2)當(dāng)線段FG長(zhǎng)度達(dá)到最大時(shí),求m的值;
(3)在點(diǎn)P,Q整個(gè)運(yùn)動(dòng)過程中,
①當(dāng)m為何值時(shí),⊙O與△ABC的一邊相切?
②直接寫出點(diǎn)F所經(jīng)過的路徑長(zhǎng)是.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當(dāng)10≤t≤30時(shí),R和t之間的關(guān)系式;
(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CD和EF,兩標(biāo)桿相隔52米,并且建筑物AB,標(biāo)桿CD和EF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G處,在G處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線上;從標(biāo)桿FE后退4米到點(diǎn)H處,在H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線上,求建筑物的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能圍成一個(gè)直角三角形.
答:選取的三條線段為 .
⑵只變動(dòng)其中兩條線段的位置,在原圖中畫出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為2的⊙O中,弦AB長(zhǎng)為2.
(1)求點(diǎn)O到AB的距離.
(2)若點(diǎn)C為⊙O上一點(diǎn)(不與點(diǎn)A,B重合),求∠BCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成4個(gè)小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中陰影部分的面積請(qǐng)用兩種方法表示:① ;②_________.
(2)觀察圖2,請(qǐng)你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)觀察圖3,你能得到怎樣的代數(shù)恒等式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若該方程有實(shí)數(shù)根,求a的取值范圍;
(2)若該方程一個(gè)根為-1,求方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買若干臺(tái)電腦,現(xiàn)從兩家商場(chǎng)了解到同一種型號(hào)的電腦報(bào)價(jià)均為元,并且多買都有一定的優(yōu)惠. 各商場(chǎng)的優(yōu)惠條件如下:
甲商場(chǎng)優(yōu)惠條件:第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠;
乙商場(chǎng)優(yōu)惠條件:每臺(tái)優(yōu)惠.
設(shè)公司購(gòu)買臺(tái)電腦,選擇甲商場(chǎng)時(shí), 所需費(fèi)用為元,選擇乙商場(chǎng)時(shí),所需費(fèi)用為元,請(qǐng)分別求出與之間的關(guān)系式.
什么情況下,兩家商場(chǎng)的收費(fèi)相同?什么情況下,到甲商場(chǎng)購(gòu)買更優(yōu)惠?什么情況下,到乙商場(chǎng)購(gòu)買更優(yōu)惠?
現(xiàn)在因?yàn)榧毙瑁?jì)劃從甲乙兩商場(chǎng)一共買入臺(tái)某品牌的電腦,其中從甲商場(chǎng)購(gòu)買臺(tái)電腦.已知甲商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,乙商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,設(shè)總運(yùn)費(fèi)為元,在甲商場(chǎng)的電腦庫(kù)存只有臺(tái)的情況下,怎樣購(gòu)買,總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com