【題目】如圖,自卸車車廂的一個(gè)側(cè)面是矩形ABCD,AB=3米,BC=0.5米,車廂底部距離地面1.2米.卸貨時(shí),車廂傾斜的角度θ=60°,問此時(shí)車廂的最高點(diǎn)A距離地面多少米?(精確到1m)
【答案】(1)點(diǎn)A距離地面為:4m.
【解析】
要算出點(diǎn)A距離地面的距離,只需算出點(diǎn)A距離車廂的距離加上1.2米即可.如下圖,過A作AF⊥CE于點(diǎn)F,延長(zhǎng)AB交FC的延長(zhǎng)線于點(diǎn)G,在△BGC中,根據(jù)已知條件可以求出∠BGC=60°,然后可以求出GB,也就求出了AG,最后可以求出AF,加上1.2就是點(diǎn)A距離地面.
解:如圖,過A作AF⊥CE于點(diǎn)F,延長(zhǎng)AB交FC的延長(zhǎng)線于點(diǎn)G,
∵θ+∠BCG=90°,∠BGC+∠BCG=90°,
∴∠BGC=60°,
∵BC=0.5米,
∴在Rt△BCG中,BG=0.5÷tan60°=,
那么AG=AB+BG=3+,
∴在Rt△AGF中,AF=AG×sin60°=(3+)×=+,
∴點(diǎn)A距離地面為+0.25+1.2≈4m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AB=4,BC=2,P是⊙O上半部分的一個(gè)動(dòng)點(diǎn),連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根。
(1)求實(shí)數(shù)的取值范圍;
(2)若方程的兩實(shí)根,滿足,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華民族,源遠(yuǎn)流長(zhǎng):中華詩(shī)詞,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校學(xué)生參加的“中國(guó)詩(shī)詞大會(huì)”海選比賽,為了更好地了解本次海選比賽的成績(jī)分布情況,隨機(jī)抽取了部分學(xué)生的海選比賽成績(jī)(滿分100分,成績(jī)m均為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(85≤m≤100),B類(70≤m≤84),C類(60≤m≤69),D類(m≤59)繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求本次抽取的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生的海選比賽成績(jī)的中位數(shù)落在哪類;
(3)若該學(xué)校學(xué)生有1500名,請(qǐng)估計(jì)該學(xué)校本次海選比賽成績(jī)?yōu)?/span>D類的學(xué)生人數(shù),并請(qǐng)你給這些學(xué)生提出一條與學(xué)習(xí)詩(shī)詞有關(guān)的合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,
OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是【 】
A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一個(gè)商標(biāo)圖案:先作矩形ABCD,使AB=2BC,AB=8,再以點(diǎn)A為圓心、AD的長(zhǎng)為半徑作半圓,交BA的延長(zhǎng)線于F,連FC.圖中陰影部分就是商標(biāo)圖案,該商標(biāo)圖案的面積等于( )
A. 4+8B. 4+16C. 3+8D. 3+16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8厘米,BC=10厘米,點(diǎn)E在邊AB上,且AE=2厘米,如果動(dòng)點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△BPE與△CQP全等時(shí),t的值為( )
A. 2B. 1.5或2C. 2.5D. 2或2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點(diǎn)F是的中點(diǎn),過點(diǎn)F作EF⊥AB于點(diǎn)E,易得點(diǎn)E是AB的中點(diǎn),即AE=EB.⊙O上一點(diǎn)C(AC>BC),則折線ACB稱為⊙O的一條“折弦”.
(1)當(dāng)點(diǎn)C在弦AB的上方時(shí)(如圖2),過點(diǎn)F作EF⊥AC于點(diǎn)E,求證:點(diǎn)E是“折弦ACB”的中點(diǎn),即AE=EC+CB.
(2)當(dāng)點(diǎn)C在弦AB的下方時(shí)(如圖3),其他條件不變,則上述結(jié)論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數(shù)量關(guān)系?直接寫出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過⊙O上一點(diǎn)P作PH⊥AC于點(diǎn)H,交AB于點(diǎn)M,當(dāng)∠PAB=45°時(shí),求AH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).
摸球的次數(shù) | ||||||
摸到黑球的次數(shù) | ||||||
摸到黑球的頻率 |
補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是________(精確到0.01);
估算袋中白球的個(gè)數(shù);
在的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計(jì)算他兩次都摸出白球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com