【題目】ABC中,DAB邊上的一點(diǎn),過(guò)點(diǎn)DDEBC,ABC的角平分線(xiàn)于點(diǎn)E.

(1)如圖1,當(dāng)點(diǎn)E恰好在AC邊上時(shí),求證:∠ADE=2DEB;

(2)如圖2,當(dāng)點(diǎn)DBA的延長(zhǎng)線(xiàn)上時(shí),其余條件不變,請(qǐng)直接寫(xiě)出∠ADE與∠DEB之間的數(shù)量關(guān)系,并說(shuō)明理由。

【答案】(1)見(jiàn)解析 (2)∠ADE+2DEB=180°

【解析】試題分析:(1)根據(jù)角平分線(xiàn)的定義可得,再根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和證明即可;
(2)同理求出 再根據(jù)三角形的內(nèi)角和定理列式計(jì)算即可得解.

試題解析:證明:(1)BE平分∠ABC,

∴∠ABE=CBE,

DEBC,

∴∠CBE=DEB,

在△BDE中,∠ADE=ABE+DEB=2DEB

(2)(1)可得∠DEB=CBE,

在△BDE,

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)1000元,領(lǐng)帶每條定價(jià)200元.廠方在開(kāi)展促銷(xiāo)活動(dòng)期間,向客戶(hù)提供兩種優(yōu)惠方案:①買(mǎi)一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價(jià)的90%付款.現(xiàn)某客戶(hù)要到該服裝廠購(gòu)買(mǎi)西裝20套,領(lǐng)帶x條(x>20).

(1)若該客戶(hù)按方案①購(gòu)買(mǎi),需付款多少元;(用含x的代數(shù)式表示)若該客戶(hù)按方案②購(gòu)買(mǎi),需付款多少元.(用含x的代數(shù)式表示)

(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?

(3)當(dāng)x=30,你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?若有,請(qǐng)寫(xiě)出你的購(gòu)買(mǎi)方案和總費(fèi)用;若無(wú),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)過(guò)B點(diǎn)作直線(xiàn)與x軸交于點(diǎn)P,若ABP的面積為,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,按如下步驟作圖: ①分別以點(diǎn)B、C為圓心,大于 AB的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M和N;
②作直線(xiàn)MN交AC于點(diǎn)D,
③連接BD,
若AC=8,則BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了減少霧霾,美化環(huán)境,小王上班的交通方式由駕車(chē)改為騎自行車(chē),小王家距單位的路程是15千米,在相同的路線(xiàn)上,小王駕車(chē)的速度是騎自行車(chē)速度的4倍,小王每天騎自行車(chē)上班比駕車(chē)上班要早出發(fā)45分鐘,才能按原時(shí)間到達(dá)單位,求小王騎自行車(chē)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間有60個(gè)工人,生產(chǎn)甲、乙兩種零件,每人每天平均能生產(chǎn)甲種零件24個(gè)或乙種零件12個(gè)已知每2個(gè)甲種零件和3個(gè)乙種零件配成一套,問(wèn)應(yīng)分配多少人生產(chǎn)甲種零件,多少人生產(chǎn)乙種零件,才能使每天生產(chǎn)的這兩種零件剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠A=30°,C=90°,E是斜邊AB的中點(diǎn),點(diǎn)PAC邊上一動(dòng)點(diǎn),若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形ABCD內(nèi),將兩張邊長(zhǎng)分別為ab(ab)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長(zhǎng)方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD﹣AB=2時(shí),S2﹣S1的值為_______(用ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡(jiǎn)單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,請(qǐng)你觀察下列幾種簡(jiǎn)單多面體模型,解答下列問(wèn)題:

1 2

探索新知如圖1,(1)根據(jù)上面多面體模型,完成表格中的空格;

多面體

頂點(diǎn)數(shù)(V

面數(shù)(F

棱數(shù)(E

四面體

4

4

長(zhǎng)方體

8

6

12

正八面體

8

12

正十二面體

20

12

30

你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是   

(2)根據(jù)以上關(guān)系式猜想是否存在一個(gè)多面體,它有16個(gè)面,50條棱,34個(gè)頂點(diǎn)?并寫(xiě)出理由。

(實(shí)際應(yīng)用)如圖2,足球一般有32塊黑白皮子縫合而成,黑色的是正五邊形,白色的是正六邊形,如

果我們近似把足球看成一個(gè)多面體.

(1)設(shè)黑色的正五邊形有x塊,則白色的正六邊形有(32﹣x塊,當(dāng)把足球看成一個(gè)多面體時(shí),它的棱數(shù)是  ,它的頂點(diǎn)數(shù)是  

(2)求出黑皮和白皮各有多少塊?

查看答案和解析>>

同步練習(xí)冊(cè)答案