(1)解:延長MB至點(diǎn)E,使BE=MC,連接AE,
∵△ABC是等邊三角形,
∴AB=AC,
∵四邊形ABMC是⊙O的內(nèi)接四邊形,
∴∠ABE=∠ACM,
在△AEB和△AMC中
,
∴△AEB≌△AMC,
∴∠AEB=∠AMC,
∵∠AMC=∠ABC(在同圓中,同弧所對(duì)的圓周角相等),
∴∠AEB=∠ABC,
∵∠AME=∠ACB(在同圓中,同弧所對(duì)的圓周角相等),
又∵∠ABC=∠ACB=60°,
∴∠AEB=∠AME=60°,
∴△AEM是等邊三角形,
∴AM=ME=MB+BE,
∵BE=MC,
∴MB+MC=MA=1+2=3.
即AM的長是3.
(2)解:分為兩種情況:①如圖,AM=
=
(a+b),
理由是:延長MB至點(diǎn)E,使BE=MC,連AE,
由(1)知:∠ABE=∠ACM,
在△ABE和△ACM中
,
∴△ABE≌△ACM,
∴AM=AE,∠E=∠AMC,
∵∠AMC=∠ABC=45°,∠AMB=∠ACB=45°,
∴∠E=∠AMB=45°,
∴∠EAM=90°,
在△EAM中,ME=MB+BE=MB+CM=a+b,AE=AM,
由勾股定理得:AM=
=
(a+b),
即AM=
=
(a+b).
②如圖,
在CM上截取CN=BM,連接AN,
∵∠ABM所對(duì)的弧和∠ACN所對(duì)的弧都是弧AM,
∴∠ABM=∠ACN,
在△ABM和△ACN中
,
∴△ABM≌△ACN(SAS),
∴AM=AN,∠BAM=∠CAN,
∵∠BAC=∠BAN+∠CAN=90°,
∴∠BAN+∠BAM=90°,
∴∠MAN=90°,
則△MAN是等腰直角三角形,
∵M(jìn)N=CM-CN=CM-BM=b-a,
由勾股定理得:AM=AN=
=
(b-a),
即AM=
(b-a).
即AM的長是
(a+b)或
(b-a).
分析:(1)延長MB至點(diǎn)E,使BE=MC,連AE,根據(jù)等邊三角形性質(zhì)求出AC=AB,根據(jù)圓內(nèi)接四邊形的性質(zhì)推出∠ABE=∠ACM,證△ABE≌△ACM,推出AM=AE,證等邊三角形AEM,推出AE=AM=ME,即可推出答案;
(2)分為兩種情況,畫出圖形,延長MB至點(diǎn)E,使BE=MC,連AE,根據(jù)等腰直角三角形性質(zhì)推出AB=AC,根據(jù)SAS證△ABE≌△ACM,推出AM=AE,∠E=∠AMC=45°,∠AMB=45°,求出△EAM是等腰直角三角形,根據(jù)勾股定理求出即可.
點(diǎn)評(píng):本題考查了等腰直角三角形,勾股定理,全等三角形的性質(zhì)和判定,等邊三角形性質(zhì),圓周角定理,圓內(nèi)接四邊形性質(zhì)等知識(shí)點(diǎn)的運(yùn)用,關(guān)鍵是正確作輔助線推出AM=BM+CM,兩小題證明過程類似,都是通過作輔助線把AM、BM、CM放在一個(gè)三角形中,求出三者之間的關(guān)系,題目比較好,有一點(diǎn)難度.