【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是弧AB上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,點F在線段DE上,且EF=2DF,過點C的直線CG交OA的延長線于點G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當點C在弧AB上運動時,△CFD的三條邊是否存在長度不變的線段?若存在,求出該線段的長度;若不存在,說明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.
【答案】
(1)證明:如圖:
,
∵點C作CD⊥OA于點D,作CE⊥OB于點E,
∴∠CDO=∠CEO=90°,
∵∠DOE=90°,
∴ODCE是矩形,
∴∠CDE+∠EDO=90°,∠EDO=∠COD.
∵∠CGO=∠CDE,
∴∠CGO+COD=90°,
∴∠OCG=90°,
∵CG經(jīng)過半徑OC的外端,
∴CG是⊙O的切線,即CG與弧AB所在圓相切
(2)解:DF不變.
在矩形ODCE中,∵DE=OC=3,EF=2DF,∴DF= DE= OC=1,
DF的長不變,DF=1
(3)解:∵∠CGD=60°,
∴∠COD=30°,
∴CD=OCsin∠COD= OC= ,OD=OCcos∠COD= OC= ,
圖中陰影部分的面積 ×π×32﹣ CDOD= ﹣
【解析】(1)根據(jù)矩形的判斷,可得OCDE的形狀,根據(jù)矩形的性質(zhì),可得∠CDE+∠EDO=90°,∠EDO=∠COD,根據(jù)余角的性質(zhì),可得∠CGO+COD=90°,根據(jù)切線的判定,可得答案;(2)根據(jù)矩形的性質(zhì),可得CD的長,根據(jù)EF與DF的關(guān)系,可得DF的長;(3)根據(jù)銳角三角函數(shù),可得CD、OD的長,根據(jù)根據(jù)圖形割補法,可得陰影的面積.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,點在第二象限的角平分線上,、的垂直平分線交于點.
(1)求證:;
(2)設(shè)交軸于點,若,求點的坐標;
(3)作交軸于點,若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義符號min{a,b}的含義為:當a≥b時min{a,b}=b;當a<b時min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是( )
A.
B.
C.1
D.0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為2的正方形ABCD中,P為AB上一動點,E為AD中點,PE交CD延長線于Q,過E作EF⊥PQ交BC延長線于F,則下列結(jié)論:①△APE△DQE;②PQ=EF;③當P為AB中點時,CF= ;④若H為QC中點,當P從A移動到B時,線段EH掃過的面積為 .其中正確的是( )
A.①②
B.①②④
C.②③④
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進行剪拼:第一次,先沿正方形的對邊中點連線剪開,然后對接為一個長方形,則此長方形的周長為___;第二次,再沿長方形的對邊(長方形的寬)中點連線剪開,對接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.
運用上述知識,解決下列問題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,點D由點C出發(fā),在BC的延長線上運動,連結(jié)AD,以AD為邊作等邊三角形ADE,連結(jié)CE.
(1)請寫出AC、CD、CE之間的數(shù)量關(guān)系,并證明;
(2)若AB=6cm,點D的運動速度為每秒2cm,運動時間為t秒,則t為何值時,CE⊥AD?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com