如圖,直線AB、CD交于點O,
(1)若∠AOC=90°,則AB
CD.
(2)若AB⊥CD,則∠AOC=
∠COB
∠COB
=
∠BOD
∠BOD
=
∠AOD
∠AOD
=
90
90
度.
分析:(1)根據(jù)垂線定義:當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直可直接得到AB⊥CD;
(2)根據(jù)垂直的定義可得∠AOC=∠COB=∠BOD=∠AOD=90°.
解答:解:(1)∵∠AOC=90°,
∴AB⊥CD;

(2)∵AB⊥CD,
∴∠AOC=∠COB=∠BOD=∠AOD=90°,
故答案為:⊥;∠COB;∠BOD;∠AOD;90.
點評:此題主要考查了垂線,關鍵是掌握垂線的定義:當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖,直線AB、CD、EF都經過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習冊答案