(2012•濟(jì)寧)如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點(diǎn)D,過點(diǎn)A作⊙O的切線AP,AP與OD的延長線交于點(diǎn)P,連接PC、BC.
(1)猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.
(2)求證:PC是⊙O的切線.
分析:(1)根據(jù)垂徑定理可以得到D是AC的中點(diǎn),則OD是△ABC的中位線,根據(jù)三角形的中位線定理可以得到OD∥BC,CD=
1
2
BC;
(2)連接OC,設(shè)OP與⊙O交于點(diǎn)E,可以證得△OAP≌△OCP,利用全等三角形的對(duì)應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可等證.
解答:(1)猜想:OD∥BC,OD=
1
2
BC.
證明:∵OD⊥AC,
∴AD=DC
∵AB是⊙O的直徑,
∴OA=OB…2分
∴OD是△ABC的中位線,
∴OD∥BC,OD=
1
2
BC

(2)證明:連接OC,設(shè)OP與⊙O交于點(diǎn)E.
∵OD⊥AC,OD經(jīng)過圓心O,
AE
=
CE
,即∠AOE=∠COE
在△OAP和△OCP中,
OA=OC
∠AOP=∠COP
OP=OP
,
∴△OAP≌△OCP,
∴∠OCP=∠OAP
∵PA是⊙O的切線,
∴∠OAP=90°.
∴∠OCP=90°,即OC⊥PC
∴PC是⊙O的切線.
點(diǎn)評(píng):本題考查了切線的性質(zhì)定理以及判定定理,三角形的中位線定理,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體的主視圖和左視圖,則組成這個(gè)幾何體的小正方體的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,點(diǎn)P坐標(biāo)為(-2,3),以點(diǎn)O為圓心,以O(shè)P的長為半徑畫弧,交x軸的負(fù)半軸于點(diǎn)A,則點(diǎn)A的橫坐標(biāo)介于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案