正方形ABCD的邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),且始終保持AM⊥MN.當(dāng)BM=    時(shí),四邊形ABCN的面積最大.
【答案】分析:設(shè)BM=x,則MC=4-x,當(dāng)AM⊥MN時(shí),利用互余關(guān)系可證△ABM∽△MCN,利用相似比求CN,根據(jù)梯形的面積公式表示四邊形ABCN的面積,用二次函數(shù)的性質(zhì)求面積的最大值.
解答:解:設(shè)BM=x,則MC=4-x,
∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,
∴∠AMB=90°-∠NMC=∠MNC,
∴△ABM∽△MCN,則=,即=,
解得CN=,
∴S四邊形ABCN=×4×[4+]=-x2+2x+8,
∵-<0,
∴當(dāng)x=-=-=2時(shí),S四邊形ABCN最大.
故答案為:2.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)的運(yùn)用.關(guān)鍵是根據(jù)已知條件判斷相似三角形,利用相似比求函數(shù)關(guān)系式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)附加題
如圖所示,正方形ABCD的邊長(zhǎng)為7,AE=BF=CG=DH=3,甲、乙兩只螞蟻同時(shí)從A點(diǎn)出發(fā),甲螞蟻以每秒
3
5
的速度沿路線AE→EF→FG→GH→HE→EB→BC→CD→DA循環(huán)爬行;乙螞蟻以每秒
4
5
的速度沿路線AH→HG→GF→FE→EH→HD→DC→CB→BA循環(huán)爬行.那么出發(fā)后兩只螞蟻在第
 
s第一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD的邊長(zhǎng)為4,P為對(duì)角線AC上一點(diǎn),且CP=3
2
,PE⊥PB交CD于點(diǎn)E,則PE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD的邊長(zhǎng)為4,P是BC上一動(dòng)點(diǎn),QP⊥AP交DC于Q,設(shè)PB=x,△ADQ的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)(1)中函數(shù)若是一次函數(shù),求出直線與兩坐標(biāo)軸圍成的三角形面積;若是二次函數(shù),請(qǐng)利用配方法求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)畫(huà)出這個(gè)函數(shù)的圖象;
(4)點(diǎn)P是否存在這樣的位置,使△APB的面積是△ADQ的面積的
23
?若存在,求出BP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)M在邊DC上,M,N兩點(diǎn)關(guān)于對(duì)角線AC對(duì)稱,若DM=2,則tan∠ADN=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案