分析 (1)根據(jù)等邊三角形的性質(zhì)可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“邊角邊”證明△BAE和△DAC全等,根據(jù)全等三角形對應(yīng)邊相等即可得證;
(2)當(dāng)AC=2AB時,△BDD′與△CPD′全等,根據(jù)等邊三角形的性質(zhì)和平行線的性質(zhì)得到四邊形ABDD′是菱形,根據(jù)菱形的對角線平分一組對角可得∠ABD′=∠DBD′=30°,根據(jù)等邊三角形的性質(zhì)求出AC=AE,∠ACE=60°,然后根據(jù)等腰三角形三線合一的性質(zhì)求出∠PCD′=∠ACD′=30°,從而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角邊角”證明△BDD′與△CPD′全等.
解答 (1)證明:∵△ABD和△ACE都是等邊三角形.
∴AB=AD,AE=AC,∠BAD=∠CAE=60°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC,
在△BAE和△DAC中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAE=∠DAC}\\{AE=AC}\end{array}\right.$,
∴△BAE≌△DAC(SAS),
∴BE=CD;
(2)解:當(dāng)AC=2AB時,△BDD′與△CPD′全等.
∵∠BAD=∠CAE=60°,
∴∠DAE=180°-60°×2=60°,
∵DP∥BC,
∴∠D′DA=∠DAB=60°,
∴△ADD′是等邊三角形,
∴AB=BD=DD′=AD′,
∴四邊形ABDD′是菱形,
∴∠ABD′=∠DBD′=$\frac{1}{2}$∠ABD=$\frac{1}{2}$×60°=30°,
∵△ACE是等邊三角形,
∴AC=AE,∠ACE=60°,
∵AC=2AB,
∴AE=2AD′,
∴∠PCD′=∠ACD′=$\frac{1}{2}$∠ACE=$\frac{1}{2}$×60°=30°,
又∵DP∥BC,
∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,
在△BDD′與△CPD′中,
$\left\{\begin{array}{l}{∠DBD′=∠PCD′}\\{BD′=CD′}\\{∠BD′D=∠PD′C}\end{array}\right.$,
∴△BDD′≌△CPD′(ASA).
點評 本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),菱形的性質(zhì)和判定,平行線的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | +(+3)和+(-3) | B. | +(-5)和-5 | C. | -(+4)和-(-4) | D. | +(-1)和|-1| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 12×104 | B. | 1.2×105 | C. | 0.12×106 | D. | 1.2×104 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com