【題目】如圖1,等邊△ABD與等邊△CBD的邊長均為2,將△ABD沿AC方向向右平移k個單位到△A′B′D′的位置,得到圖2,則下列說法:①陰影部分的周長為4;②當k時,圖中陰影部分為正六邊形;③當k時,圖中陰影部分的面積是;正確的是( )

A. B. ①②C. ①③D. ①②③

【答案】C

【解析】

根據(jù)等邊三角形的性質(zhì)以及平移的性質(zhì),即可得到OM+MN+NR+GR+EG+OEA′D′+CD2+24;根據(jù)A′F,即可得到MO≠MN,進而得出陰影部分不是正六邊形;陰影部分的面積=A′B′D′的面積﹣A′MN的面積﹣OD′E的面積﹣RGB′的面積,據(jù)此進行計算即可.

解:∵兩個等邊ABD,CBD的邊長均為2,將ABD沿AC方向向右平移到A′B′D′的位置,

A′MA′NMN,MODMDO,OD′D′EOEEGECGC,B′GRGRB′,

OM+MN+NR+GR+EG+OEA′D′+CD2+24

故①正確;

k

A′F

A′MA′F÷cos30°1,MN1

MO≠MN,

∴陰影部分不是正六邊形,

故②錯誤;

陰影部分的面積=A′B′D′的面積﹣A′MN的面積﹣OD′E的面積﹣RGB′的面積

故③正確,

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,圓心為P(x,y)的動圓經(jīng)過點A(1,2)且與x軸相切于點B.

(1)當x=2時,求⊙P的半徑;

(2)求y關于x的函數(shù)解析式,請判斷此函數(shù)圖象的形狀,并在圖②中畫出此函數(shù)的圖象;

(3)請類比圓的定義(圖可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數(shù)圖象進行定義:此函數(shù)圖象可以看成是到   的距離等于到   的距離的所有點的集合.

(4)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點C、D,其中交點D(m,n)在點C的右側,請利用圖②,求cosAPD的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開闊學生的視野,積極組織學生參加課外讀書活動.放飛夢想讀書小組協(xié)助老師隨機抽取本校的部分學生,調(diào)查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:

1)求被調(diào)查的學生人數(shù);

2)補全條形統(tǒng)計圖;

3)已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃組織學生到市影劇院觀看大型感恩歌舞劇,為了解學生如何去影劇院的問題,學校隨機抽取部分學生進行調(diào)查,并將調(diào)查結果制成了表格、條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).

1)此次共調(diào)查了多少位學生?

2)將表格填充完整;

步行

騎自行車

坐公共汽車

其他

50

3)將條形統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一點,且AEBC,DFAE,垂足是F,連接DE

求證:(1DFAB;

2DE是∠FDC的平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.

(1)求證:DE=OE;

(2)若CDAB,求證:BC是⊙O的切線;

(3)在(2)的條件下,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,,過點作直線,將繞點順時針旋轉得到(點,的對應點分別為,),射線,分別交直線于點,

1)如圖1,當重合時,求的度數(shù);

2)如圖2,設的交點為,當的中點時,求線段的長;

3)在旋轉過程中,當點,分別在,的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】恩陽區(qū)市民廣場有一棵高大的老黃角樹樹.小明為測量該樹的高度AD,在大樹前的平地上點C處測得大樹頂端A的仰角∠C31°,然后向前直走22米到達B處,又測得大樹頂端A的仰角∠ABD45°,已知C、B、D在同一直線上(如圖所示),求老樹的高度AD.(參考數(shù)據(jù):tan31°≈,sin31°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).

(1)求該拋物線所對應的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.

查看答案和解析>>

同步練習冊答案