已知拋物線經(jīng)過一直線y=3x-3與x軸、y軸的交點(diǎn),并經(jīng)過(2,5)點(diǎn).
求:(1)拋物線的解析式;
(2)拋物線的頂點(diǎn)坐標(biāo)及對稱軸;
(3)當(dāng)自變量x在什么范圍內(nèi)變化時(shí),函數(shù)y隨x的增大而增大?
(4)在坐標(biāo)系內(nèi)畫出拋物線的圖象.
(1)設(shè)所求拋物線解析式為y=ax2+bx+c,
則由直線y=3x-3,令y=0,解得x=1,
則與x軸交點(diǎn)為(1,0),
令x=0,解得y=-3,
則與y軸交點(diǎn)為(0,-3)
拋物線又過點(diǎn)(2,5),
c=-3
a+b+c=0
4a+2b+c=5
,
解得:
a=1
b=2
c=-3
,
故所求拋物線為y=x2+2x-3;

(2)由x=-
b
2a
=-
2
2×1
=-1,y=
4ac-b2
4a
=
4×1×(-3)-4
4×1
=-4,
則拋物線頂點(diǎn)坐標(biāo)為(-1,-4),對稱軸是直線x=-1;

(3)∵a=1>0,
∴當(dāng)x>-1時(shí),函數(shù)y的值隨x的增大而增大;

(4)作圖如圖:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線y=ax2+bx+c與X軸交于兩不同的點(diǎn)A(-1,0),B(m,0),(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長至點(diǎn)M,使HM=k•FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OA=OB,BCx軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)D的上方),DE=
2
,過D、E兩點(diǎn)分別作y軸的平行線,交拋物線于F、G,若設(shè)D點(diǎn)的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時(shí),y有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一次函數(shù)圖象與x軸y軸交于A(6,0)B(0,2
3
)線段AB的垂直平分線交x軸于點(diǎn)C交y軸于點(diǎn)D
求:(1)求這個(gè)一次函數(shù)的解析式;
(2)過A,B,C三點(diǎn)的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.
(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.
①求c的值;
②將該拋物線向下平移m個(gè)單位,使頂點(diǎn)落在線段AO上,請直接寫出相應(yīng)的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有一個(gè)拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中如圖,求拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=
1
4
x2+1
的頂點(diǎn)為M,直線l過點(diǎn)F(0,2)且與拋物線分別相交于A、B兩點(diǎn).過點(diǎn)A、B分別作x軸的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.
(1)如圖:
①若A(-1,
5
4
),求證:AC=AF;
②若A(m,n),判斷以CD為直徑的圓與直線l的位置關(guān)系.并加以證明.
(2)若直線l繞點(diǎn)F旋轉(zhuǎn),且與x軸交于點(diǎn)P,PC×PD=8.求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

草莓是對薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營養(yǎng)價(jià)值高,含豐富維生素C,有幫助消化的功效,與此同時(shí),草莓還可以鞏固齒齦,清新口氣,潤澤喉部.我市某草莓種植基地去年第x個(gè)月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
月份x123456789101112
13種植某數(shù)y6810121416161616161616
每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出z與x之間滿足的函數(shù)關(guān)系式;
(2)該草莓種植基地在去年哪個(gè)月的總收益最大,求出這個(gè)最大收益;
(3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請你參考以下數(shù)據(jù),通過計(jì)算估算出a的整數(shù)值.(參考數(shù)據(jù):
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

同步練習(xí)冊答案