【題目】在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點(diǎn)C為圓心,r為半徑的圓與邊AB(邊AB為線(xiàn)段)僅有一個(gè)公共點(diǎn),則r的值為( )
A.r≥B.r=3或r=4C.≤r≤4 D.r=或3<r≤4
【答案】D
【解析】
此題注意兩種情況:(1)圓與AB相切時(shí);(2)點(diǎn)A在圓內(nèi)部,點(diǎn)B在圓上或圓外時(shí).根據(jù)勾股定理以及直角三角形的面積計(jì)算出其斜邊上的高,再根據(jù)位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行求解.
如圖,根據(jù)勾股定理求得AB=5.
∵BC>AC,
∴以C為圓心,r為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn).
分兩種情況:
(1)圓與AB相切時(shí),即r=CD=3×4÷5=;
(2)點(diǎn)A在圓內(nèi)部,點(diǎn)B在圓上或圓外時(shí),此時(shí)AC<r≤BC,即3<r≤4.
∴r=或3<r≤4.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線(xiàn)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與軸的另一交點(diǎn)為(,0).
(1)求拋物線(xiàn)的解析式;
(2)若直線(xiàn)與拋物線(xiàn)相交于點(diǎn)A和點(diǎn)B(點(diǎn)A在第二象限),設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn),連接A′B,試判斷ΔAA′B的形狀,并說(shuō)明理由;
(3)在問(wèn)題(2)的基礎(chǔ)上,探究:平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)A,B,A′,P為頂點(diǎn)的四邊形是菱形?若存在直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在中,,,,是斜邊的中點(diǎn),以為頂點(diǎn),作,的兩邊交邊于點(diǎn)、(點(diǎn)不與點(diǎn)重合)
(1)當(dāng)時(shí),求的長(zhǎng)度;
(2)當(dāng)繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),設(shè),,求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍.
(3)聯(lián)結(jié),是否存在點(diǎn),使△與△相似?若存在,請(qǐng)求出此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在甲、乙兩名同學(xué)中選拔一人參加“英語(yǔ)口語(yǔ)聽(tīng)力”大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:
甲:79,81,82,85,83 乙:88,79,90,81,72.
(1)求甲、乙兩名同學(xué)測(cè)試成績(jī)的方差;
(2)請(qǐng)你選擇一個(gè)角度來(lái)判斷選拔誰(shuí)參加比賽更合適.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10m,BC=40m,∠C=90°,點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC邊向點(diǎn)C以2m/s的速度勻速移動(dòng),同時(shí)另一點(diǎn)Q由C點(diǎn)開(kāi)始以3m/s的速度沿著邊CB勻速移動(dòng),幾秒時(shí),△PCQ的面積等于432m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(4,3).
(1)求這條拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求該拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(3)在給定坐標(biāo)系內(nèi)畫(huà)出這條拋物線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
(1)用開(kāi)平方法解方程:
(2)用配方法解方程:x2 —4x+1=0
(3)用公式法解方程:3x2+5(2x+1)=0
(4)用因式分解法解方程:3(x-5)2=2(5-x)
(5)解方程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱(chēng)這個(gè)最小值為圖形M,N間的“距離”,記作特別地,若圖形M,N有公共點(diǎn),規(guī)定.
如圖1,的半徑為2,
點(diǎn),,則______,______.
已知直線(xiàn)l:與的“距離”,求b的值.
已知點(diǎn),,的圓心為,半徑為若,請(qǐng)直接寫(xiě)出m的取值范圍______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)P為△ABC內(nèi)一點(diǎn),∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com