【題目】如圖,在等腰直角ABC中,∠C=90°,DBC的中點,將ABC折疊,使點A與點D重合,EF為折痕,則sinBED的值是(  )

A. B. C. D.

【答案】B

【解析】分析:先根據(jù)翻折變換的性質(zhì)得到DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.

詳解:∵△DEFAEF翻折而成,

∴△DEF≌△AEF,A=EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=BED+45°,

∴∠BED=CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

DF=FA=2-x,

∴在RtCDF中,由勾股定理得,

CF2+CD2=DF2,

x2+1=(2-x)2

解得:x=,

sinBED=sinCDF=

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊四邊形的紙板剪去DEC,得到四邊形ABCE,測得∠BAE =BCE=90°,BC=CEAB=DE

1)能否在四邊形紙板上只剪一刀,使剪下的三角形與DEC全等?請說明理由;

2)求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點,則tanOAB的值是( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的中點

①用直尺和圓規(guī)在邊上求作點,使得(保留作圖痕跡,不要求寫作法);

②在①的條件下,如果,那么的中點嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實黨的精準扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.

(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明沿街道勻速行走,他注意到每隔6分鐘從背后駛過一輛1路公交車,每隔4分鐘迎面駛來一輛1路公交車.假設(shè)每輛1路公交車行駛速度相同,而且1路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是________分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰△AOB,AO=AB=5OB=6.以O為原點,以OB邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標系.


1)求點A的坐標;
2)若點A關(guān)于y軸的對稱點為M,點N的橫、縱坐標之和等于點A的橫坐標,請在圖中畫出一個滿足條件的△AMN,并直接在圖上標出點M,N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,OA=OB=6,點C,D分別為線段OA,OB上的動點(C,D不與A,B重合),則AD+CD+BC的最小值為(

A.4B.6C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,在邊長為1的正方形網(wǎng)格中,△AOB的頂點均在格點上,點A,B的坐標分別是A(3,1),B(2,3).

(1)請在圖中畫出△AOB關(guān)于y軸的對稱△AOB′,點A′的坐標為  ,點B′的坐標為  ;

(2)請寫出A′點關(guān)于x軸的對稱點A′'的坐標為  ;

(3)求△AOB′的面積.

查看答案和解析>>

同步練習冊答案