【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( )
A. B. C. D.
【答案】B
【解析】分析:先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.
詳解:∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設(shè)CD=1,CF=x,則CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,
CF2+CD2=DF2,
即x2+1=(2-x)2,
解得:x=,
∴sin∠BED=sin∠CDF=.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊四邊形的紙板剪去△DEC,得到四邊形ABCE,測得∠BAE =∠BCE=90°,BC=CE,AB=DE.
(1)能否在四邊形紙板上只剪一刀,使剪下的三角形與△DEC全等?請說明理由;
(2)求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點,則tan∠OAB的值是( 。
A. B. C. 1 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為的中點
①用直尺和圓規(guī)在邊上求作點,使得(保留作圖痕跡,不要求寫作法);
②在①的條件下,如果,那么是的中點嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明沿街道勻速行走,他注意到每隔6分鐘從背后駛過一輛1路公交車,每隔4分鐘迎面駛來一輛1路公交車.假設(shè)每輛1路公交車行駛速度相同,而且1路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是________分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△AOB,AO=AB=5,OB=6.以O為原點,以OB邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標系.
(1)求點A的坐標;
(2)若點A關(guān)于y軸的對稱點為M,點N的橫、縱坐標之和等于點A的橫坐標,請在圖中畫出一個滿足條件的△AMN,并直接在圖上標出點M,N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,OA=OB=6,點C,D分別為線段OA,OB上的動點(C,D不與A,B重合),則AD+CD+BC的最小值為( )
A.4B.6C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,在邊長為1的正方形網(wǎng)格中,△AOB的頂點均在格點上,點A,B的坐標分別是A(3,1),B(2,3).
(1)請在圖中畫出△AOB關(guān)于y軸的對稱△A′OB′,點A′的坐標為 ,點B′的坐標為 ;
(2)請寫出A′點關(guān)于x軸的對稱點A′'的坐標為 ;
(3)求△A′OB′的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com