某商店購進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲得更多利潤,商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360件,若按每件25元的價(jià)格銷售時(shí),每月能賣210件.假定每月銷售件數(shù)y(件)是價(jià)格x(元/件)的一次函數(shù).

(1)

試求出y與x之間的關(guān)系式

(2)

在商店不積壓,且不考慮其他因素的條件下,問:銷售價(jià)格定為多少時(shí),才能使每月獲得最大利潤?每月的最大利潤是多少?

答案:
解析:

(1)

設(shè)y=kx+b,依題意直線經(jīng)過(20,360),(25,210),可得解得所以y=-30x+960

(2)

  解:設(shè)總利潤=(-30x+960)(x-16)=-30x2+960x+480x-960×16=-30x2+1440x-15360=-30(x2-48x+576)-15360+17280=-30(x-24)2+1920.因此,價(jià)格定為24元時(shí),才能獲得最大利潤,最大利潤為1920元

  解題指導(dǎo):已給出銷售件數(shù)y與價(jià)格x是一次函數(shù),由(20,360),(25,210)是函數(shù)上兩點(diǎn),即可求出關(guān)系式,問題(2)用總件數(shù)乘以1件的利潤而求出答案


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、某商店購進(jìn)一批單價(jià)為8元的商品,如果按每件10元出,那么每天可銷售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷售單價(jià)每提高1元,其銷售量相應(yīng)減少10件.將銷售價(jià)定為多少,才能使每天所獲銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商店購進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲得更多利潤,商店決定提高銷售價(jià)格.經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360件;若按每件25元的價(jià)格銷售時(shí),每月能賣210件.假定每月銷售件數(shù)y(件)是價(jià)格x(元/件)的一次函數(shù).
(1)試求y與x之間的關(guān)系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價(jià)格定為多少時(shí),才能使每月獲得最大利潤?每月的最大利潤是多少(總利潤=總收入-總成本)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、某商店購進(jìn)一批單價(jià)為20元的日用商品,如果以單價(jià)30元銷售,那么月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷量的減少,即銷售單價(jià)每提高1元,每月銷售量相應(yīng)減少20件,請寫出利潤y與單價(jià)x之間的函數(shù)關(guān)系式
y=-20x2+1400x-20000(20<x<50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•酒泉一模)某商店購進(jìn)一批單價(jià)為8元的日用品,如果以單價(jià)10元出售,那么每天可以售出100件.根據(jù)銷售經(jīng)驗(yàn),這種日用品的銷售單價(jià)每提高1元,其銷售量相應(yīng)減少10件.將銷售價(jià)定為
14
14
元時(shí),才能使每天所獲銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商店購進(jìn)一批單價(jià)為20元的日用商品,如果以單價(jià)30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗(yàn),推廣銷售單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高1元,銷售量相應(yīng)減少20件.
(1)銷售單價(jià)提高多少元,可獲利4480元.
(2)如何提高售價(jià),才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案