如圖所示,小華同學(xué)在距離某建筑物6米的點(diǎn)A處測(cè)得廣告牌B點(diǎn)、C點(diǎn)的仰角分別為52°、35°,則廣告牌的高度BC為    米(精確到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)
【答案】分析:圖中有兩個(gè)直角三角形△ABD、△ACD,可根據(jù)兩個(gè)已知角度,利用正切函數(shù)定義,分別求出BD和CD,求差即可.
解答:解:根據(jù)題意:在Rt△ABD中,有BD=AD•tan52°.
在Rt△ADC中,有DC=AD•tan35°.
則有BC=BD-CD=6(1.28-0.70)=3.5(米).
點(diǎn)評(píng):本題考查仰角的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖所示,小華同學(xué)在距離某建筑物6米的點(diǎn)A處測(cè)得廣告牌B點(diǎn)、C點(diǎn)的仰角分別為52°、35°,則廣告牌的高度BC為
3.5
米(精確到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第1章《解直角三角形》中考題集(25):1.3 解直角三角形(解析版) 題型:填空題

如圖所示,小華同學(xué)在距離某建筑物6米的點(diǎn)A處測(cè)得廣告牌B點(diǎn)、C點(diǎn)的仰角分別為52°、35°,則廣告牌的高度BC為    米(精確到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《解直角三角形》中考題集(22):25.3 解直角三角形(解析版) 題型:填空題

如圖所示,小華同學(xué)在距離某建筑物6米的點(diǎn)A處測(cè)得廣告牌B點(diǎn)、C點(diǎn)的仰角分別為52°、35°,則廣告牌的高度BC為    米(精確到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例7.2.解直角三角形及其應(yīng)用(解析版) 題型:填空題

(2009•仙桃)如圖所示,小華同學(xué)在距離某建筑物6米的點(diǎn)A處測(cè)得廣告牌B點(diǎn)、C點(diǎn)的仰角分別為52°、35°,則廣告牌的高度BC為    米(精確到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)

查看答案和解析>>

同步練習(xí)冊(cè)答案