【題目】如圖,E,F,GH分別是邊AB,BCCD,DA的中點,連接EFFG,GHHE.

(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(2)當BD,AC滿足什么條件時,四邊形EFGH是正方形?請說明理由.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)在△ABC中,E.F分別是邊AB、BC中點,

得到EFAC, GHAC,得到四邊形EFGH是平行四邊形;
(2)四邊形EFGH是平行四邊形,再由AC=BD,得出EH=EF從而證得四邊形EFGH是菱形.對角線相等,推知四邊形EFGH是正方形;

試題解析:(1)在△ABC中,E.F分別是邊AB、BC中點,

所以EFAC,

同理有GHAC,

EFGHEF=GH

故四邊形EFGH是平行四邊形.

(2)EHBD

AC=BD,則有EH=EF,

又因為四邊形EFGH是平行四邊形,

∴四邊形EFGH是菱形,

ACBD,

即:當AC=BDACBD時,四邊形EFGH是正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是邊長為4cm的正方形的邊AB的中點,點P是正方形邊上的動點,從點M出發(fā)沿著逆時針方向在正方形的邊上以每秒1cm的速度運動,則當點P逆時針旋轉(zhuǎn)一周時,隨著運動時間的增加,△DMP面積達到5cm2的時刻的個數(shù)是( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在筆直的鐵路上AB兩點相距25km,CD為兩村莊,DA=10km,CB=15km,DAABACBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠處?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.

(1)求購買一個籃球、一個足球各需多少元;

(2)若體育老師帶了8000元去購買這種籃球與足球共100個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A、B和D的距離分別為1,2 , ,△ADP沿點A旋轉(zhuǎn)至△ABP′,連結(jié)PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OD恰為∠BOE的平分線.

(1)圖中∠BOC的補角是 把符合條件的角都填出來);

(2)若∠AOD=145°,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】回答下列問題:

(1)計算:①(x+2)(x+3)= (x +7)( x-10)= ;(x-5)(x-6)=

(2)總結(jié)公式:(x+a)(x+b)=

(3)已知a,b,m均為整數(shù),且(x+a)(x+b)=x2+mx+6,求m的所有可能值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A=∠D,∠EGC=∠FHB

(1)求證:ABCD

(2)求證:∠E=∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把帶有指針的圓形轉(zhuǎn)盤A、B分別分成4等份、3等份的扇形區(qū)域,并在每一個小區(qū)域內(nèi)標上數(shù)字(如圖所示).小明、小樂兩個人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止時,若指針所指兩區(qū)域的數(shù)字之積為3的倍數(shù),則小明勝;否則,小樂勝.(若有指針落在分割線上,則無效,需重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)試用列表或畫樹狀圖的方法,求小明獲勝的概率;
(2)請問這個游戲規(guī)則對小明、小樂雙方公平嗎?做出判斷并說明理由.

查看答案和解析>>

同步練習冊答案