如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);

(2)在該拋物線的對(duì)稱軸上求一點(diǎn)P,使得△PAC的周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);

(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過D作DE⊥x軸,垂足為E.

①有一個(gè)同學(xué)說:“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動(dòng)至點(diǎn)Q時(shí),折線D-E-O的長(zhǎng)度最長(zhǎng)”,這個(gè)同學(xué)的說法正確嗎?請(qǐng)說明理由.

②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不能,請(qǐng)簡(jiǎn)要說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知直線n為正整數(shù))與坐標(biāo)軸圍成的三角形的面積為Sn,則S1+S2+S3+…+S2014=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某同學(xué)在研究四邊形的相關(guān)性質(zhì)時(shí)發(fā)現(xiàn),在不改變面積的條件下,一般梯形很難轉(zhuǎn)化為菱形,但有些特殊的梯形通過分割可以轉(zhuǎn)化為菱形.例如以下的等腰梯形就可以轉(zhuǎn)化為菱形(如圖1),已知在等腰梯形ABCD中,ADBC,AD=10,CD=20,∠C=60°.

(1)求梯形ABCD的面積;

(2)如果將該梯形分割成幾塊,然后可以重新拼成菱形,試畫出變化后的圖形(在圖1中畫出,圖形的對(duì)應(yīng)部分標(biāo)明相同的編號(hào));

(3)在完成上述任務(wù)后,他又試著將梯形的形狀變?yōu)橹苯翘菪危ㄈ鐖D2),其它條件不變,將梯形分成幾塊.

①他能拼成一個(gè)菱形嗎?如果能,請(qǐng)?jiān)趫D2中畫出相應(yīng)的圖形;

②他能拼成一個(gè)正六邊形嗎?如果能,請(qǐng)?jiān)趫D3中畫出相應(yīng)的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)A、B、C、D在⊙O上,點(diǎn)D在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=   


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD中,BE=CF.

    (1)求證:△BCE≌△CDF;

    (2)求證:CE⊥DF;

    (3)若CD=4,且DG2+GE2=18,則BE=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(   )

A.角                          B.等邊三角形            C.平行四邊形            D.矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在函數(shù)中,自變量x的取值范圍是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在下列實(shí)數(shù)中,無理數(shù)是

   A.2                 B.3.14             C            D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若關(guān)于x的不等式組無解,則a的取值范圍為(  )

A.a(chǎn)<4      B.a(chǎn)=4     C. a≤4       D.a(chǎn)≥4

查看答案和解析>>

同步練習(xí)冊(cè)答案