用剪刀將形狀如圖1所示的矩形紙片ABC沿著直線CM剪成兩部分,其中M為AD的中點,利用旋轉(zhuǎn)、平移、軸對稱等變換可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.
(1)用這兩部分紙片除了可以拼成圖2外,還可以拼成一些四邊形,請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)由(1)可知直角三角形可以一刀切后拼成梯形,那么任一三角形(不等邊)能否一刀切后拼成梯形,如圖5,請你試一試.
【答案】分析:(1)還可以拼成等腰梯形和平行四邊形;
(2)可先過A作一條直線平行于BC,找到AB的中點,過AB的中點任意畫一直線與BC及所作的平行線相交即可.
解答:解:

點評:考查學(xué)生的動手操作能力及類別推理能力,把任意三角形拼合為梯形是解決本題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、用剪刀將形狀如圖1所示的矩形紙片ABC沿著直線CM剪成兩部分,其中M為AD的中點,利用旋轉(zhuǎn)、平移、軸對稱等變換可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.
(1)用這兩部分紙片除了可以拼成圖2外,還可以拼成一些四邊形,請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)由(1)可知直角三角形可以一刀切后拼成梯形,那么任一三角形(不等邊)能否一刀切后拼成梯形,如圖5,請你試一試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點.用這兩部分紙片可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.
(1)用這兩部分紙片除了可以拼成圖2中的Rt△BCE外,還可以拼成一些四邊形.請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個實數(shù)根,試求出原矩形紙片的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)二模)用剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點.用這兩部分紙片可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.

(1)用這兩部分紙片除了可以拼成圖2中的Rt△BCE外,還可以拼成一些四邊形.請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)若原矩形周長為12,則能否拼出面積為10的直角三角形?請給出回答,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年九年級上學(xué)期月考數(shù)學(xué)卷 題型:解答題

用剪刀將形狀如圖1所示的矩形紙片ABC沿著直線CM剪成兩部分,其中M為AD的中點,利用旋轉(zhuǎn)、平移、軸對稱等變換可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個圖形.

(1)用這兩部分紙片除了可以拼成圖2外,還可以拼成一些四邊形,請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).

(2)由(1)可知直角三角形可以一刀切后拼成梯形,那么任一三角形(不等邊)能否一刀切后拼成梯形,如圖5,請你試一試.

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:解答題

用剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點。用這兩部分紙片可以拼成一些新圖形。例如圖2中的Rt△BCE就是拼成的一個圖形。
(1)用這兩部分紙片除了可以拼成圖2中的Rt△BCE外,還可以拼成一些四邊形。請你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi)。
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個實數(shù)根,試求出原矩形紙片的面積。

查看答案和解析>>

同步練習(xí)冊答案