(2012•瀘州)如圖,n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn=
1
4(2n-1)
1
4(2n-1)
.(用含n的式子表示) 
分析:由n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,即可求得△B1C1Mn的面積,又由BnCn∥B1C1,即可得△BnCnMn∽△B1C1Mn,然后利用相似三角形的面積比等于相似比的平方,求得答案.
解答:解:∵n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,
∴S1=
1
2
×B1C1×B1M1=
1
2
×1×
1
2
=
1
4
,
S△B1C1M2=
1
2
×B1C1×B1M2=
1
2
×1×
3
2
=
3
4

S△B1C1M3=
1
2
×B1C1×B1M3=
1
2
×1×
5
2
=
5
4
,
S△B1C1M4=
1
2
×B1C1×B1M4=
1
2
×1×
7
2
=
7
4
,
S△B1C1Mn=
1
2
×B1C1×B1Mn=
1
2
×1×
2n-1
2
=
2n-1
4

∵BnCn∥B1C1,
∴△BnCnMn∽△B1C1Mn,
∴S△BnCnMn:S△B1C1Mn=(
BnMn
B1Mn
2=(
1
2
2n-1
2
2,
即Sn
2n-1
4
=
1
(2n-1)2
,
∴Sn=
1
4(2n-1)

故答案為:
1
4(2n-1)
點評:此題考查了相似三角形的判定與性質、正方形的性質以及直角三角形面積的公式.此題難度較大,注意掌握相似三角形面積的比等于相似比的平方定理的應用是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•瀘州)如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=
k
x
 (k>0)在第一象限的圖象經過A、C兩點,若△OAB面積為6,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•瀘州)如圖,邊長為a的正方形ABCD繞點A逆時針旋轉30°得到正方形A′B′C′D′,圖中陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•瀘州)如圖,矩形ABCD中,E是BC的中點,連接AE,過點E作EF⊥AE交DC于點F,連接AF.設
AB
AD
=k,下列結論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當k=1時,△ABE∽△ADF,其中結論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•瀘州)如圖,二次函數(shù)y=-
1
2
x2+mx+m+
1
2
的圖象與x軸相交于點A、B(點A在點B的左側),與y軸相交于點C,頂點D在第一象限.過點D作x軸的垂線,垂足為H.
(1)當m=
3
2
時,求tan∠ADH的值;
(2)當60°≤∠ADB≤90°時,求m的變化范圍;
(3)設△BCD和△ABC的面積分別為S1、S2,且滿足S1=S2,求點D到直線BC的距離.

查看答案和解析>>

同步練習冊答案