分析 將A坐標(biāo)代入反比例解析式求出k的值即可;過點(diǎn)C作CN⊥y軸,垂足為N,延長BA,交y軸于點(diǎn)M,得到CN與BM平行,進(jìn)而確定出三角形OCN與三角形OBM相似,根據(jù)C為OB的中點(diǎn),得到相似比為1:2,確定出三角形OCN與三角形OBM面積比為1:4,利用反比例函數(shù)k的意義確定出三角形OCN與三角形AOM面積,根據(jù)相似三角形面積之比為1:4,求出三角形AOB面積即可.
解答 解:∵點(diǎn)A(3,4)在雙曲線y=$\frac{k}{x}$(x>0)上,
∴k=3×4=12.
過點(diǎn)C作CN⊥y軸,垂足為N,延長BA,交y軸于點(diǎn)M,
∵AB∥x軸,
∴BM⊥y軸,
∴MB∥CN,
∴△OCN∽△OBM,
∵C為OB的中點(diǎn),即$\frac{OC}{OB}$=$\frac{1}{2}$,
∴$\frac{{S}_{△OCN}}{{S}_{△OBM}}$=($\frac{1}{2}$)2,
∵A,C都在雙曲線y=$\frac{12}{x}$上,
∴S△OCN=S△AOM=6,
由$\frac{6}{6+{S}_{△AOB}}$=$\frac{1}{4}$,
得:S△AOB=18,
則△AOB面積為18.
故答案是:18.
點(diǎn)評 此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì),以及反比例函數(shù)k的意義,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com