在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、M、F、N分別是AB、BC、CD、DA的中點(diǎn),已知BC=10,MN=3,則EF=________.

7
分析:過點(diǎn)N分別作NG∥AB,NH∥CD,得平行四邊形ABGNH和平行四邊形DCHN,根據(jù)平行四邊形的性質(zhì)可得到△GNH為直角三角形,且MN為其斜邊上的中線,由已知可求得GH的長(zhǎng),從而不難求中位線的長(zhǎng)了.
解答:解:過點(diǎn)N分別作NG∥AB,NH∥CD,得平行四邊形ABGNH和平行四邊形DCHN
∴∠NGM+∠NHM=∠B+∠C=90°,GH=BC-AD,MG=MH
∴GH=2MN=6
∴AD=10-6=4
∴EF=(AD+BC)=(4+10)=7
故答案是:7.
點(diǎn)評(píng):特別注意此題中的輔助線:平移兩腰.則構(gòu)造了平行四邊形和直角三角形,根據(jù)平行四邊形的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行分析求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案